Difference between revisions of "CH32 Oscillator"
Jump to navigation
Jump to search
(→Timer) |
|||
Line 5: | Line 5: | ||
== Timer == | == Timer == | ||
+ | |||
+ | A timer will be responsible for the sample frequency. The timer will be configured to run at 48000 Hz and it will generate an Update event for each clock. | ||
<pre> | <pre> | ||
Line 22: | Line 24: | ||
} | } | ||
</pre> | </pre> | ||
+ | |||
+ | A Period of 3000 will give us our desired 48000 Hz (144000000 / 3000 = 48000). | ||
== DMA == | == DMA == |
Revision as of 02:14, 5 July 2022
In order to get to know the CH32V307 MCU better I decided to create a dual oscillator using the DACs.
Timer
A timer will be responsible for the sample frequency. The timer will be configured to run at 48000 Hz and it will generate an Update event for each clock.
void Timer4_Init (void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = { 0 }; RCC_APB1PeriphClockCmd (RCC_APB1Periph_TIM4, ENABLE); TIM_TimeBaseStructInit (&TIM_TimeBaseStructure); TIM_TimeBaseStructure.TIM_Period = 3000 - 1; TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit (TIM4, &TIM_TimeBaseStructure); TIM_SelectOutputTrigger (TIM4, TIM_TRGOSource_Update); TIM_Cmd (TIM4, ENABLE); }
A Period of 3000 will give us our desired 48000 Hz (144000000 / 3000 = 48000).
DMA
void Dac_Dma_Init (void) { DMA_InitTypeDef DMA_InitStructure = { 0 }; RCC_AHBPeriphClockCmd (RCC_AHBPeriph_DMA2, ENABLE); DMA_StructInit (&DMA_InitStructure); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &(DAC->RD12BDHR); DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) &dac_buffer[0]; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_BufferSize = 2 * BUFFER_SIZE; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init (DMA2_Channel3, &DMA_InitStructure); DMA_ITConfig (DMA2_Channel3, DMA_IT_TC, ENABLE); DMA_ITConfig (DMA2_Channel3, DMA_IT_HT, ENABLE); DMA_Cmd (DMA2_Channel3, ENABLE); }
DAC
void Dual_Dac_Init (void) { GPIO_InitTypeDef GPIO_InitStructure = { 0 }; DAC_InitTypeDef DAC_InitType = { 0 }; // Make sure the APB busses are clocked RCC_APB2PeriphClockCmd (RCC_APB2Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd (RCC_APB1Periph_DAC, ENABLE); // Configure PA4 and PA5 for analog output GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init (GPIOA, &GPIO_InitStructure); GPIO_SetBits (GPIOA, GPIO_Pin_4); // Throw a debug pulse out on PA6 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init (GPIOA, &GPIO_InitStructure); // DAC convertion triggered by Timer 4 DAC_InitType.DAC_Trigger = DAC_Trigger_T4_TRGO; DAC_InitType.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_InitType.DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0; DAC_InitType.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init (DAC_Channel_1, &DAC_InitType); DAC_Init (DAC_Channel_2, &DAC_InitType); DAC_Cmd (DAC_Channel_1, ENABLE); DAC_Cmd (DAC_Channel_2, ENABLE); DAC_DMACmd (DAC_Channel_1, ENABLE); DAC_DMACmd (DAC_Channel_2, ENABLE); DAC_SetDualChannelData (DAC_Align_12b_R, 0x123, 0x321); }
DMA Interrupt
void DMA_Interrupt_Init () { /*Configuration interrupt priority*/ NVIC_InitTypeDef NVIC_InitStructure = { 0 }; NVIC_InitStructure.NVIC_IRQChannel = DMA2_Channel3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //Seeing priority NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //Response priority NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //Enable NVIC_Init (&NVIC_InitStructure); }
Oscillator Calculation
__attribute__((interrupt("WCH-Interrupt-fast"))) void DMA2_Channel3_IRQHandler () { // To time the ISR throw debug out hi GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_SET); if (DMA_GetITStatus (DMA2_IT_TC3) != RESET) { ++full_count; update_dac_buffer (&dac_buffer[BUFFER_SIZE]); DMA_ClearITPendingBit (DMA2_IT_TC3); } else if (DMA_GetITStatus (DMA2_IT_HT3) != RESET) { ++half_count; update_dac_buffer (&dac_buffer[0]); DMA_ClearITPendingBit (DMA2_IT_HT3); } // Finally toggle debug out low again GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_RESET); }
static inline void update_dac_buffer (uint32_t *buffer_address) { for (uint8_t sample = 0; sample < BUFFER_SIZE; ++sample) { for (uint8_t oscillator = 0; oscillator < 2; ++oscillator) { osc[oscillator].last_value = osc[oscillator].amplitude * sinf (osc[oscillator].angle); osc[oscillator].angle += osc[oscillator].angle_per_sample; // rotate if (osc[oscillator].angle > M_TWOPI) osc[oscillator].angle -= M_TWOPI; // roll over } buffer_address[sample] = (((uint16_t) (MID_POINT + MID_POINT * osc[1].last_value)) << 16) | ((uint16_t) (MID_POINT + MID_POINT * osc[0].last_value)); } }