
Guide for developing USB Composite Device for STM32 Hardware Platform

1www.einfochips.com

Guide for Developing
USB Composite Device for
STM32 Hardware Platform

http://www.einfochips.com
http://www.einfochips.com

Guide for developing USB Composite Device for STM32 Hardware Platform

2

Contents
1.	 Overview...3

2.	 Basics of Required Dependencies ..3

2.1	 What is a composite USB device?...3

2.2	 USB specification and descriptors..4

2.3	 USB driver for host system and individual device..6

2.4	 STM32CubIDE..6

2.5	 STM32 USB device library architecture...7

2.6	 STM32 USB device library class drivers..8

3.	� Implementation of the USB Composite Device Driver for the STM32 Platform..9

3.1	 Architecture of the default USB device with a single class...9

3.2	 Architecture for the composite USB device with multiple class.. 12

4.	 Debugging and Integrating with Application Layer.. 27

4.1	 Integrating with application layer.. 27

4.2	 Debugging the issues for composite device driver ... 27

Guide for developing USB Composite Device for STM32 Hardware Platform

3

2. Basics of Required Dependencies
2.1 What is a composite USB device?

1. Overview

The USB interface is extraordinarily complex, multi-level and multi-faceted. Anyone can be easily swayed
by the immensity of the information to digest while working on a USB device. The specification of the USB
device along with all the respective “Class” devices is itself more than 1000 pages. Preparing the USB device
driver from scratch and providing support for some class-specific USB interfaces require a lot of work and
time. However, many manufacturers provide a sophisticated ecosystem for their product family which
eases out the implementation by providing the framework or library. This document covers the aspects
of developing a USB Composite Device for STM32-based hardware using the existing STM32CubeIDE and
STM32 USB Device Driver Library.

The ST provides a very sophisticated IDE integration to develop the USB device driver. The STM32CubeIDE
tool supports the auto-generation of the code for the USB device for an individual Class. It provides
support for many different class devices. But the tool does not support the creation of a composite
device. However, once you digest the existing architecture of the USB device driver Library provided by ST
electronics along with a few aspects of the USB Class and Descriptor specification, it will be much easier
to prepare a Composite Device using the existing code from ST electronics. It will save a lot of time and
work to prepare the composite device. Hence, to develop a Composite Device Driver for the STM platform,
the audience is requested to at least have a basic understanding of USB device, Composite Device and
STM32 USB Library Code architecture.

The document tries to cover the maximum audience who are interested in USB composite device drivers
for the STM32 platform. Hence, all the necessary components are described with bare minimum details
in the basic details section. The document is divided into three parts:

All individual aspects of the Composite Device Driver are sufficient to write a full-scale book. The details
provided in this document are kept bare minimum but sufficient to keep the audience engaged, active and
interested. A working USB composite device of RNDIS + Audio + Virtual Com Port for High-Speed Interface
on the STM32H7XX series of processors has been created using these guidelines. The same example is
followed throughout the document. However, the audience can perform any combination of class drivers
for their required Composite Device using the provided guidelines.

Usually, one USB device implements only one functionality of any one class type. As an example, a USB
device can be either Mass Storage (Thumb Drive), Audio Device (USB Headphone/Microphone), Mouse
(CDC), or Serial Com Port (CDC). However, a Composite USB Device incorporates multiple functionalities in
a single USB device. As an example, RNDIS + Audio + Virtual Comport + Mass storage devices are accessed
through a single USB port of the target hardware.

A composite device-specific detailed information is not available in the USB specification. However, it can
be abstracted as a part of the Interface Association Descriptor Specification. There is little information
available in the community related to USB composite device development. It becomes exceedingly difficult
to figure out what to explore and understand in specifications to develop a healthy and host-compatible
composite USB device. The Composite device is no more different than an individual USB class device in
terms of the USB specification. The ability to differentiate the functionality and their associated interfaces
are the key to developing the USB composite Device. The major class driver can be incorporated into the
composite device. However, the user needs to take care of the bandwidth requirements and performance
of each functionality while creating the composite device. As an example, a Mass Storage Class in Full

•	 Basic Details related to the components of the USB Composite Device Driver Development
•	 Implementation of the USB Composite Device Driver for the STM32 platform
•	 Debugging and integrating the USB Composite Device Driver with the Application Layer

Guide for developing USB Composite Device for STM32 Hardware Platform

4

2.2 USB specification and descriptors
The USB specification is a noticeably big document. It covers many things for a variety of supported
USB class interfaces. However, most of the specifications are implemented readily by the OEM, and the
audience is not required to go through all the details.

The following are the important descriptors that need to be understood well to prepare a composite
device. The Composite Device needs these descriptors properly defined to get enumerated and work with
a host system.

Speed USB device will suffer a lot in throughput if audio and video device class drivers are incorporated
into the USB device as a composite device.

There are various fields and attributes for each Descriptor. Each attribute and field have incredibly
significant information to convey. Even a one-bit error in any of the descriptor fields can lead to the failure
of the USB device or its functional interface enumeration. Further details of them should be explored in
the “Descriptors” Section of the “USBnutshell” Guideline. Every individual interested in a Composite USB
device must at least go through the “USBnutshell” Guideline once to understand the concepts and details
of important aspects of USB specification more simply.

Device descriptor
It describes the device. Its name, manufacturer, serial number, and other device-specific information. Each
USB device should have only one Device Descriptor. String data is described by separate string descriptors
(String Descriptor).

Configuration descriptor
It describes various supported configurations of the USB device. A device can have one or more
configurations. Each configuration determines the speed of communication with the device, a set of
interfaces and power settings. So, for example, a USB device can have multiple configurations to support
different sampling frequencies. An all-in-one printer may have different configurations to support different
speeds and interfaces for communication interfaces.

Interface descriptor
It describes the interface of communication with the device. There can be several interfaces. For example,
different functions (MSC, CDC, HID) will implement their interfaces. Some functions (for example, CDC or
DFU) implement several interfaces at once for their work. In our case of a composite device, we will need
to implement several interfaces from different functions at once and make them have a good relationship
with each other.

Endpoint descriptor
It describes the communication channel within a specific interface, sets the packet size and describes the
parameters of interrupts. Using endpoints, the actual data will be transmitted or received.

Interface association interface (IAD)
It describes the association of the interface with functionality. It is a mandatory descriptor for the composite
device. For a composite device, each functionality has its IAD descriptor to provide the associated interface
number, class, subclass, and device protocol type. A device configuration can have more than one IAD.
Each IAD must be located immediately before the interfaces in the interface group that the IAD describes.
The following figure from the specification is enough to understand the IAD usage for the composite USB
device.

https://www.beyondlogic.org/usbnutshell/usb5.shtml
https://www.beyondlogic.org/usbnutshell/usb1.shtml
https://www.beyondlogic.org/usbnutshell/usb1.shtml

Guide for developing USB Composite Device for STM32 Hardware Platform

5

More information on the Interface Association Descriptor can be accessed here.

The complete USB specification by the OEM can be searched and accessed here.

Figure 2.1. Example Device Framework Using Interface Association Descriptors

https://www.usb.org/sites/default/files/iadclasscode_r10.pdf
https://www.usb.org/documents

Guide for developing USB Composite Device for STM32 Hardware Platform

6

2.3 USB driver for host system and individual device
The USB interface is host-based. The host initiates the request to access the device. Hence, there is a driver
required to initiate and handle the request as per the USB specification in the host system. There is also a
driver required on the device side to receive the request from the host system and provide the appropriate
response to the request. The functionality on the host side is different than the functionality on the device
side. This document only provides information on preparing the USB interface on the device side. The
host-side driver is usually available in all modern-day operating systems such as Windows, Mac OS, Linux
and others. However, it is observed that each operating system has its compatibility specifications. They
also have their own set of rules on top of the USB specification for USB device operations. It has been
observed during the composite USB device development that a final and complete composite USB device
works well with the Linux host system. However, the Windows system fails to even enumerate either the
entire device or a part of its functionality.

The reason to include this topic in this document is to make the audience aware that it is especially
important to understand the architecture and support of the host system when a device driver is being
developed for the Composite Device. In case of failure to enumerate the work of the developed USB
composite device’s interface in the intended host system may not necessarily be an issue with the USB
specification implementation at the target device driver side. The target device driver implementation
can be perfect as per the USB specification and it can still fail to work with the specific host system. This
should further be diagnosed and debugged through the tools and techniques available for the targeted host
system. It has been observed that Linux is the most versatile and preferable development environment
for USB device driver development. The host driver of Linux has better and wider class support. The user
also has the flexibility to customize and change it for the development of the targeted device driver.
Linux provides a lot of inbuilt and free diagnostic and debugging tools to verify the USB composite device
implementation.

When all individual functional interfaces of the respected composite device are working well with the
host system, there is no change or update required in the USB host driver or at the host system for the
respective composite device with the same interfaces. As an example, a composite device having one
Virtual Com Port and One Mass Storage interface does not need anything specific to be implemented or
taken care of on the host system side. Such a Composite Device will enumerate on its own without any
difficulty and works fine. The system will show two different functionalities under one USB device. Usually,
all operating systems support a Mass Storage Device and a Serial Com Port Device individually so the
Composite Device of these two interfaces will work without any difficulties in the host system. For the
development of a Composite USB device, there is a possibility that the intended host system does not
support the class functionality of the device-specific requirements. In such cases, the host driver for the
required class should also be developed for the respective operating system.

2.4 STM32CubIDE
STM32CubeIDE is an exceptionally good integrated development tool for the STM-based processor. It
allows the users to have a ready initialization of most of the interfaces and functionality. It provides a
ready infrastructure for all the on-chip interfaces. Most of the time the user only needs to develop the
application-specific interface code. The example Composite Device of the RNDIS + Audio + Virtual Com
Port is created through this tool.

It is included in this document for ease of the user to have a readily available user interface file for the
individual USB interface of the composite device. The user is requested to generate a USB interface
functionality using the tool for all the required interfaces of the composite device.

There are particularly good user video guides available by the OEM for the tool. Visit the following links to
know more about the STM32CubeIDE:

https://youtu.be/eumKLXNlM0U

https://www.youtube.com/playlist?list=PLnMKNibPkDnFCosVVv98U5dCulE6T3Iy8

https://youtu.be/eumKLXNlM0U
https://www.youtube.com/playlist?list=PLnMKNibPkDnFCosVVv98U5dCulE6T3Iy8

Guide for developing USB Composite Device for STM32 Hardware Platform

7

2.5 STM32 USB device library architecture
The USB Device Library from the ST is well-organized and properly layered. The following is the summary
of the architecture levels and their respective functionality.
•	 Class Driver: They implement the logic of a specific class of devices - CDC for virtual COM port, MSC

for storage devices, HID for keyboards/mice and any specific device with a user interface.
•	 USB Core (usbd_core.c, usbd_ctlreq.c, usbd_ioreq.c): It implements the general logic of operation of

all classes of USB devices. It can send the requested descriptors to the host, process requests from
the host and configure the USB device. It also redirects data streams from the class driver level to the
underlying levels and vice versa.

•	 USB HW Driver (usbd_conf.c): The overlying layers are platform-independent and work the same
way for several series of microcontrollers. The code does not have a low-level function that calls for
a specific microcontroller. The usbd_conf.c file implements a layer between the USB Core and HAL,
a library of low-level drivers for the selected microcontroller. There are simple wrappers that redirect
calls from top to bottom and callbacks from bottom to top.

•	 HAL (stm32f1xx_hal_pcd.c, stm32f1xx_ll_usb.c): It is engaged in communication with the
microcontroller hardware, operates with registers and responds to interrupts.

Application

USB Device Configuration

Device Controller Driver (DCD)

Low Level Driver Core

USB Device HAL Driver

USB Device Core

Core

USB Requests

Lo
g/

D
eb

ug

I/O Requests

USB Device Core

(HID, MSC,
DFU, AUDIO,
...etc)

Reference:
stm32cube-usb-device-library-stmicroelectronics

There are also incredibly good user video guides
available by the OEM for the USB device library
architecture. Visit the following links if interested
to know more about the STM-provided USB Device
Library stack.

The following is a layout summary of the USB library layered architecture:
•	 USB Device file - Init and De-Init functionality
•	 Application Layer Interface File – usbd_class_if.c to be prepared by the User
•	 Class Driver – Individual Class driver available; Composite Class driver to be prepared by the User
•	 USB Core – some code changes are required for the Composite class
•	 USB HW Driver – Update Endpoint FIFO allocation for the Composite class
•	 HAL – No change is required for the Composite class

https://youtu.be/I1HfAkz-brc

https://www.youtube.com/playlist?list=PLnMKNibPkDnFFRBVD206EfnnHhQZI4Hxa

https://www.st.com/resource/en/user_manual/dm00108129-stm32cube-usb-device-library-stmicroelectronics.pdf#page=1
https://youtu.be/I1HfAkz-brc
https://www.youtube.com/playlist?list=PLnMKNibPkDnFFRBVD206EfnnHhQZI4Hxa

Guide for developing USB Composite Device for STM32 Hardware Platform

8

2.6 STM32 USB device library class drivers

Note: The user can also find example projects of the USB device implementation in the repository. As an
example, for the STM32H745 Discovery board, the example code for the DFU and HID standalone USB
device can be found at -

“%UserProfile%\STM32Cube\Repository\STM32Cube_FW_H7_V1.8.0\Projects\STM32H745I-DISCO\
Applications\USB_Device” location. The example program will provide a base code for the application-
level interface integration for the USB device.

Each class driver has its configuration descriptor and class-specific interface API pointers to be registered
with the Core Library.

The Class Driver File usually has the following coding architecture:
•	 Class-specific Interface defining structure followed by
•	 Class-specific configuration descriptor followed by
•	 Class-specific interface function implementation

The ST OEM provides support for most of the generic device classes. The respective code can be found
in the GIT repository easily. If the STM32CubeIDE is installed and for one of the class USB device codes
is generated through the tool, then the entire repository is readily available on the local system at the
following locations in the Windows system.

%UserProfile%\STM32Cube\Repository

For the composite device project, the Firmware for the H7 series with revision 1.8.0 was used. It was
having the following supported class drivers available locally at “%UserProfile%\STM32Cube\Repository\
STM32Cube_FW_H7_V1.8.0\Middlewares\ST\STM32_USB_Device_Library\Class.”

Guide for developing USB Composite Device for STM32 Hardware Platform

9

3. �Implementation of the USB Composite Device Driver for the
STM32 Platform

3.1 Architecture of the default USB device with a single class

The STM32CubeIDE auto-generated code for the Audio Class Device for the STM32H745I Disc board shows
the following results when the USB device is plugged into the Windows system.

The Audio Driver is ready to enumerate and accept data from the Windows host system. The user needs to
consume the data available through the Audio class interfaces as per the application needs of the target
system.

Similarly, the virtual Com Port’s respective USB code base can also be easily created and tested out for
enumeration.

The Control and code flow for the USB module is as per the following diagram.

Within the main function, the USB device initialization MX_USB_DEVICE_Init from the usb_device.c is called.
It performs the basic USB initialization process. Once the USB Device and dependencies are initialized and
the USB device is attached to the host system, the enumeration process gets initiated.

The enumeration process follows the host-to-device control flow. Where the host requests information
and the device provide it.

The required information during enumeration is available as part of the descriptor and class driver code
in usbd_audio.c file.

Guide for developing USB Composite Device for STM32 Hardware Platform

10

The Usb_device.c file has the following important components to understand:

Main Application

USB HW Driver
usbd_conf.c

USB Audio Class Driver
usbd_audio.c

USB Device Init
usb_device.c

USB Init USB de-init

USB Audio Class Interface
usbd_audio_if.c

USB HAL Driver
stm32xxx_hal_pcd.c
stm23xxx_ll_usb.c

USB Core Library
usbd_core.c usbd_ctlreq.c usbd_ioreq.c

Guide for developing USB Composite Device for STM32 Hardware Platform

11

USBD_RegisterClass (&hUsbDeviceFS, &USBD_AUDIO)

It is in usb_core.c file which registers the function pointer structure of the Audio Class with the USB Device
Structure.

USBD_AUDIO_RegisterInterface (&hUsbDeviceFS, &USBD_AUDIO_fops_FS)

Is in usbd_audio.c file for the audio class driver which registers the structure pointer of the Audio Class
User Interface with the USB Device Structure.
Usbd_audio.c file has the following important components and layouts to process all the audio
class-related functionalities.

Guide for developing USB Composite Device for STM32 Hardware Platform

12

The proposed solution for the composite device can be easily visualized as per this architecture diagram.
The “application layer” as well as the “application interface layer” remain unchanged. The HAL driver
components also remain unchanged.

A new composite class (“SUDO”) driver in between the USB core library and individual class drivers
is placed. The idea is to have the new composite class driver as a switching portal. As each Class
Functionality will have its associated Interfaces and Endpoints, the Composite driver should be able to
redirect the request to the individual class driver based on the Interface Number or Endpoint number in
the argument.

To create the Composite USB, all the components connected with the Red Colored control flow arrows
in the diagram need to be modified, upgraded, or created. The required changes are explained in detail in
the following section.

3.2 Architecture for the composite USB device with multiple class

Main Application Layer
Audio Processing

Application Layer LWIP
and ETH stack

Application Layer
CLI interface

USB HW Driver
usbd_conf.c

USB Audio Class Driver File USB RNDIS Class Driver File USB VCP Class Driver File

USB Composite
Class Driver File

USB Device File
USB Init USB de-Init

USB Audio Class
interface File

USB RNDIS Class
interface File

USB VCP Class
Interface File

USB HAL Driver
stm32xxx_hal_pcd.c
stm32xxx_II_usb.c

USB Core Library

Guide for developing USB Composite Device for STM32 Hardware Platform

13

Here is the list of things to do in code for the composite USB device development.

•	 Organize and gather the USB device respective all the files in a single directory with a proper hierarchy
and segregation. Rename the files appropriately if needed.

•	 Create a new set of source files for the Composite class driver from the templates.
•	 Prepare the USB composite device interface and endpoint footprint for the configuration descriptor.
•	 Update the USB core library code to hold the multiple “class interface” structures and handle requests

based on the new parameters.
•	 Prepare the new composite class driver file.

•	 Prepare the composite class configuration descriptor by copying and appending configuration
descriptors from the individual class drivers.
•	 Add the IAD descriptor before each class descriptor group.
•	 Update the class grouped descriptor for the interface number and Endpoint number.
•	 Update the descriptor for the total number of interfaces, Eps, and the total size of the conf

descriptor.
•	 Prepare the Composite Class Driver APIs to redirect the request from the core library to the individual

class driver.
•	 Update the individual Class Drivers files to support redirecting functionality of the Composite Driver.

•	 Remove the structure holding the function pointers of the class driver.
•	 Remove the configuration and another descriptor for the class.
•	 Make all the class interface functions global.
•	 Find and replace the “class interface structure” (pClassData and pUserData)pointer that is renamed

as per the core library changes.
•	 Implement Logic for the EPO_RxReady request to identify the associated individual class as there is no

Interface Number or EndPoint Number available in the argument.
•	 USBD_CtlPrepareRx Look for the individual class driver – set a global flag that the next EP0 receives

a request for this class driver.
•	 Update the usb_device.c file

•	 Register the new composite class driver APIs and all the required “class interface” APIs structure
pointers.

•	 Prepare the usbd_desc.c file -
•	 Update the USB standard device descriptor.

•	 Update the usbd_conf.c file –
•	 USBD_LL_Setup_Fifo() function to allocate the proper FIFO for each endpoint as per the new

Endpoint Layout.
•	 Update the USBD_MAX_NUM_INTERFACES to have the maximum Interfaces in the Composite

Device.

3.2.1 Reorganize and gather the USB Device’s respective files

It is better to create a new directory that holds all the files and dependencies related to the composite
USB device. All the respective files should be copied over to a new location (Keep the original unchanged
for reference. It may help in the future for debugging and verifying).

Guide for developing USB Composite Device for STM32 Hardware Platform

14

3.2.2 Create a new set of files for the
composite class driver

In this example, the composite driver includes
RNDIS, AUDIO and VCP. New files are created from
the templates class driver files available in the
repository. They are renamed as usbd_rndis_audio_
vcp.c/.h. It is advisable to create these files from
the templates as they incorporate all the curbs
and grubs required to be prepared for the class
driver.

3.2.3 Interface and endpoint footprint for
the USB composite device

By going through the individual class driver, the
user can easily find the total number of interfaces
required for each class, as well as endpoint
requirements for each interface. Simply search for
the “bNumInterfaces” keyword in the respective
class driver “.c” file which will tell you about the
number of required interfaces. Similarly, search
for the “Endpoint” keyword, it will tell you about
the required endpoints for each interface. For
example, in the usbd_cdc_rndis.c file, the user can
find the total Interfaces for the class, Interface
type, Interface ID and endpoint required in each
interface by simply going through the code and
comments.

Explore the following code snippet and try to
understand the details of the highlighted code:

USB composite device
•	 Applications interface

•	 Audio
•	 RNDIS
•	 VCP (renamed usb_cdc_if.c/.h to usb_cdc_

vcp_if.c/.h)
•	 Class driver

•	 Composite class (move all the files of drivers
into the common directory) (renamed usbd_
cdc.c/.h to usbd_cdc_vcp.c/.h)

•	 Core library
•	 USBD_Conf
•	 USB_Device

For the current example: Files for the “USB
Composite Device” can be reorganized as the
following:

Guide for developing USB Composite Device for STM32 Hardware Platform

15

Guide for developing USB Composite Device for STM32 Hardware Platform

16

Class driver Required
interface Interface ID

Required
endpoint host -
client

End point id Endpoint packet
size (bytes)

End point FiFo
size (Pkt size/16)

RNDIS Control interface 0
Out – receive Not required NA NA

In - transmit 0x81 16 1

RNDIS Data interface 1
Out - receive 0x02 64 Rx_Fifo

RNDIS 0x82 64 4

Audio Control interface 2
Out - receive Not required NA NA

Audio Not required NA NA

Audio Data interface 3
Out - receive 0x03 192 Rx_Fifo

Audio Not required NA 1

VCP Control interface 4
Out – receive Not required NA NA

VCP 0x84 16 1

VCP Data interface 5
Out - receive 0x05 64 Rx_Fifo

In - transmit 0x85 64 4

Using this method, the user needs to figure out the following aspects of the composite device class to
prepare the configuration descriptor.
•	 How many total interfaces are required for the composite device class?
•	 What will be the order of the interface ID and associated device Class?
•	 For each class what is the interface ID number?
•	 For each Interface what are the required endpoints?
Based on this, the user can prepare the Interface and associated endpoint footprint required for the
composite device class.

The above table is the first step to prepare the configuration descriptor for the composite device. There
might be more than one configuration descriptor in the class driver file. It is observed that each class
driver provides a descriptor for High Speed, Full Speed, and another Speed compatibility. Hence, there
are three sets of configurations descriptors available. As per the user’s needs, the user can prepare the
respective configuration map.

3.2.4 Update the USB core library code to hold the multiple “class interface” structures

As per the device initialization code, each interface needs to be registered with the core library. During
the registration functionality, the Core library holds the interface-specific details on the “USB device
Handle.” Refer to the following code and Highlighted line.

Table: Footprint of interfaces and endpoints for the composite device

Guide for developing USB Composite Device for STM32 Hardware Platform

17

Hence, to support and register the multiple class driver, the user needs to have multiple place holders
in the structure. Hence, update the “USBD_HandleTypeDef” structure to hold the required class driver
pointers.

Respectively, rename these pointers throughout the code swiftly. The pClassData and pUserData in the
VCP class driver should be replaced with pClassVcpData and pUserVcpData, respectively. Similar changes
should also be made for other class drivers of the composite device as well.

3.2.5 Prepare new composite class driver file

The user has all the required info to prepare the Composite Class Driver file. The new file should hold
a configuration descriptor and composite class APIs to redirect the request from the core library to the
respective class driver.

3.2.5.1 Prepare configuration descriptor

Preparing configuration descriptor for the composite device is considerably easy as each class driver
already has its configuration descriptor. The user does not need to write it from scratch. The user needs
to copy the configuration descriptor from the respective class and join them together with the help of
the Interface Association Descriptor. On top of this, the user also needs to revisit the composite device
configuration descriptor to update the total number of interfaces, total size of configuration descriptor,
interfaces, and endpoint numbers for each IAD interface.

Guide for developing USB Composite Device for STM32 Hardware Platform

18

The user needs to do following three things:
•	 Add IAD descriptor with appropriate data for each individual class descriptor group in the beginning.
•	 Update the class grouped descriptor for the interface number and endpoint number.
•	 Update the descriptor for the total number of interfaces, Eps, and total size.
Note: The descriptor holds extremely sensitive information about the device. The USB host will ask for
configuration descriptor and based on the configuration descriptor the host will further initialize the
device. Hence, even a single byte error can lead to failure of enumeration for the entire composite device
or individual class driver. The user must have necessary knowledge about the fields that require changes
for the configuration descriptor.

Guide for developing USB Composite Device for STM32 Hardware Platform

19

3.2.5.2 Prepare composite class driver function interface

Preparing the composite class driver interfaces are also considerably easy. The user needs to redirect
the function call to its respective class driver based on the associated endpoint number or the interface
number.

For example, the DataIn, DataOut, IsoIn, and IsoOut interfaces have arguments as endpoint numbers. As
per the details from the footprint table, it is already known which corresponds to which class driver.

For example, the setup interface is having USBD_SetupReqTypedef *req as its argument. Through the
req->bmRequest and req->wIndex, the user can find the respective class driver. The request can be of
interface type or endpoint type. User must filter both out for each class driver.

Guide for developing USB Composite Device for STM32 Hardware Platform

20

Guide for developing USB Composite Device for STM32 Hardware Platform

21

3.2.6 Update existing individual class driver and associated interface files

The individual class driver files require modification to support the composite class driver. There are
no logical changes or functional changes required in the individual class driver and its corresponding
interface files. However, many cosmetic and compatibility changes are required to be carried out.

The following is the list of changes to be made:
•	 Remove the structure holding function pointers of the individual class driver.
•	 Remove the configuration and other descriptor for the individual class.
•	 Remove the “GetCfgDesc” and “GetDeviceQualifierDescinterfaces” interfaces for the individual class.
•	 Update all the class interface respective functions from static to global.
•	 Find and replace the “class interface structure” (pClassData and pUserData) pointer that is renamed as

per core library changes in the class driver file.
•	 Add all class-specific interface declarations into the respective header files.
•	 Update the interface number and endpoint number respective macros of each class driver as per the

new footprint for the composite class.
•	 Find and replace the “class interface structure” (pClassData and pUserData) pointer that is renamed as

per the core library changes in the corresponding interface file (usbd_<class>_if.c/.h file).

Guide for developing USB Composite Device for STM32 Hardware Platform

22

Note:
1.	 Use #if 0 to omit out or remove code from the existing individual class driver file.
2.	 Use find and replace for (pClassData and pUserData).
3.	 Use find and replace to change the static scope into global for all the class driver interfaces that are

being called from the composite class.

3.2.7 Update for EPO RxReady request

Update existing individual class driver files to determine that the EPO_RxReady is about to be executed.
Set a global flag for such an indication. Use the global flag to get an indication of which driver’s
respective function call should be called. As per the USB specification, all the EP0 respective commands
will always be initiated with the request of the class respective Setup command. The individual class
driver always prepares the buffer for receiving data through the EP0 afterwards.

The user needs to find the USBD_CtlPrepareRx function at individual class driver and set the respective
class specific EP0 request flag. The composite class driver API can use this flag to redirect the EP0
service call to its respective individual driver and reset it afterwards.

3.2.7.1 Update individual class driver to set the EP0 Rx ready functionality

The user needs to find the USBD_CtlPrepareRx function at the individual class driver and set the
respective class specific EP0 request flag.

3.2.7.2	 Update composite class driver the EPO_RxReady interface to handle the request

The EPO_RxReady interface at the composite driver should access the respective individual class driver’s
EP0 request flag and based on it call their respective serving interfaces.

Guide for developing USB Composite Device for STM32 Hardware Platform

23

3.2.8 Update usb_device.c file

The usb device.c file registers the function pointer for the class driver and the user space class interface
function pointers. As per the newly created composite driver file and updated existing class driver files,
the user is supposed to change the call. Refer to the below code snippet that was changed to register
the composite USB device class and individual class interfaces for the user space. The user needs
to include the class driver and its respective interface files at the top. At the main function, the user
requires to make appropriate changes to register all the class interfaces.

Guide for developing USB Composite Device for STM32 Hardware Platform

24

Guide for developing USB Composite Device for STM32 Hardware Platform

25

3.2.9 Update usbd_desc.c file

The device descriptor file is a generic file that can be used across multiple class drivers. The file
“usbd_desc.c” holds the USB standard device descriptor. Change the DeviceClass, DeviceSubClass, and
DeviceProtocol attributes to 0xFF, 0x02, and 0x01 respectively for the composite device.

3.2.10 Update usbd_conf.c/.h file

These are wrapper files that play a vital role between the HAL driver and USB composite device
architecture. There is no functional change needed at any of the logical implementation for this section
except two places.

3.2.10.1 Update the usbd_conf.h file

Change the supported maximum number of interfaces by the driver architecture. It should be set as per
the table showing the footprint of Interfaces and Endpoints. For this example, it has been changed to 6.

Guide for developing USB Composite Device for STM32 Hardware Platform

26

3.2.10.2 Update the usbd_conf.c file

Update the USBD_LL_Init function to incorporate the changes needed for the low-level fifo to get aligned
with the new EndPoint mapping. Refer to the table showing the footprint of the Interfaces and Endpoints
to figure out the FIFO size allocation.

Guide for developing USB Composite Device for STM32 Hardware Platform

27

4. Debugging and Integrating with Application Layer

4.1 Integrating with application layer
Each individual class driver has its associated user space application interface file. The interface file
provides integration with the application layer. The ST OEM provides almost the complete interface file for
all the supported class drivers. The user can easily find them alongside the class driver file. The user can
also find the enhanced version with the example program for the respective processor family. As per the
user requirements, it can be further enhanced and improved. The interfaces registered through the usb_
device.c files will be accessed during the device class operation. The integration for each individual class
driver for the application layer is usually extremely easy when you understand the call back interfaces
functionality required within the call.

Providing details on the implementation for the application layer interface for each class driver can not
be covered in this scope. The application layer is always user and requirement dependent. It cannot be
generalized. This is the extended part of the composite USB device. Mostly the developer struggles while
preparing the composite class and enumeration. However, when a developer has issues integrating the
functionality of the class driver with the application layer, it is advisable to refer to the respective available
example program from the OEM for that individual class driver.

4.2 Debugging the issues for composite device driver
Debugging such complex implementation and USB enumeration process can be considered one of the
most challenging parts during the implementation. As there are many different areas which can lead to
failure of the USB composite device enumeration, it is crucial that the user can find out the probable cause
of area. Development is preferable on Linux platform or Windows platform.

4.2.1 Debugging on Linux platform
1.	 Use command prompt for enumeration related issues

a. Use lsusb command to find out the list of the successful USB enumerated interfaces.

Note: It can also be used to read details about the device and configuration descriptor.t

b. Use lsusb command to find out the list of the successful USB enumerated interfaces.

c. Use the dmesg to find out what is happening within the kernel during the enumeration process

Note: It can help to find out whether the enumeration of each individual class interface is successful
or not.

In case of failure during the enumeration of class interface, it can point to possible root cause or issue.

2.	 Use the wireshark tool to figure out the enumeration issues that the Linux command line is not able
to pinpoint. When the developer does not find any helpful information from the Linux command line
for the enumeration or USB device failure, wireshark is very robust, efficient, and free tool to debug
the issues between the Host and Device. The developer needs to capture the session between the
Host and Device. Based on the session data, the user can analyze and figure out the root cause of
the issue.

Guide for developing USB Composite Device for STM32 Hardware Platform

28

Guide for developing USB Composite Device for STM32 Hardware Platform

29

4.2.2 Debugging on Windows platform
There is extremely limited support available on the Windows platform to debug the USB debugging or
functionality related issues. Following is the list of points that the developer can try to reach the root cause
of the issue.
1.	 Use tdd.exe file to get the USB device descriptor

Thesycon’s descriptor dumper is a Windows’ utility that displays the USB descriptors of any USB
device. The dump is in plain text format and can be saved to a file or copy-pasted into an email. This
is the most useful tool for developers and technical support personnel.

2.	 Use Wireshark tool to figure out the enumeration issues
When a developer does not find any helpful information from the descriptor of the USB device,
Wireshark is very robust, efficient, and free tool to debug the issues between the Host and Device.
The developer needs to capture the session between the Host and device. Based on the session
data, users can analyze and figure out the root cause of the issue.

Guide for developing USB Composite Device for STM32 Hardware Platform

30

FOLLOW US /einfochips /einfochipsltd /einfochips /einfochipsindia

[1]	 https://en.wikipedia.org/wiki/USB
[2]	 https://www.beyondlogic.org/usbnutshell/usb1.shtml
[3]	 https://www.usb.org/document-library/usb-20-specification
[4]	 https://www.usb.org/sites/default/files/iadclasscode_r10.pdf
[5]	 https://wiki.st.com/stm32mcu/wiki/Introduction_to_USB_with_STM32
[6]	 https://www.st.com/resource/en/user_manual/dm00108129-stm32cube-usb-device-library-stmicroelectronics.pdf#page=1
[7]	 https://sudonull.com/post/68144-CDC-MSC-USB-Composite-Device-on-STM32-HAL
[8]	 https://www.programmersought.com/article/18127793400/
[9]	 https://en.wikipedia.org/wiki/Host_controller_interface_(USB,_Firewire)
[10]	 https://wiki.ubuntu.com/Kernel/Debugging/USB
[11]	 https://www.youtube.com/watch?v=C8UKrIKqH78
[12]	 https://youtu.be/eumKLXNlM0U
[13]	 https://www.youtube.com/playlist?list=PLnMKNibPkDnFCosVVv98U5dCulE6T3Iy8
[14]	 https://youtu.be/I1HfAkz-brc
[15]	 https://www.youtube.com/playlist?list=PLnMKNibPkDnFFRBVD206EfnnHhQZI4Hxa

References

Vishalkumar Padalia

(Senior Technical Lead, eInfochips Inc.)

Vishalkumar Padalia is working as Senior Technical Lead at eInfochips - an arrow company. He has more
than 15 years of experience in Embedded System Design and verification. He has worked for more than
9 years for Airborne Software Development and verification. His experience includes development and
verification of software for Display Processing Mission Computer, Flight Cockpit Display System, Flight
Mission Computers, Primary Flight Control Computer and so on. Vishalkumar holds a Bachelor of Engineering
degree in Electronics and Communication.

About The Author

	1. Overview
	2. Basics of required Dependencies
	2.1 What is a Composite USB Device?
	2.2 USB specification and Descriptors
	2.3 USB Driver for Host System and Individual Device
	2.4 STM32CubIDE
	2.5 STM32 USB Device Library Architecture
	2.6 STM32 USB Device Library Class Drivers

	3.0 �Implementation of the USB Composite Device Driver for the
STM32 platform
	3.1 Architecture of the default USB device with a single class
	3.2 Architecture for the composite USB device with multiple class

	4 Debugging and Integrating with Application Layer
	4.1 Integrating with Application Layer
	4.2 Debugging the issues for Composite Device Driver

