
Guide for developing USB Composite Device for STM32 Hardware Platform

1www.einfochips.com

Guide for Developing
USB Composite Device for
STM32 Hardware Platform

http://www.einfochips.com
http://www.einfochips.com

Guide for developing USB Composite Device for STM32 Hardware Platform

2

Contents
1. Overview ..3

2. Basics of Required Dependencies ...3

2.1 What is a composite USB device? ..3

2.2	 USB	specification	and	descriptors..4

2.3 USB driver for host system and individual device ...6

2.4 STM32CubIDE ...6

2.5 STM32 USB device library architecture ..7

2.6 STM32 USB device library class drivers..8

3. Implementation of the USB Composite Device Driver for the STM32 Platform ...9

3.1 Architecture of the default USB device with a single class ..9

3.2 Architecture for the composite USB device with multiple class ... 12

4. Debugging and Integrating with Application Layer ... 27

4.1 Integrating with application layer ... 27

4.2 Debugging the issues for composite device driver ... 27

Guide for developing USB Composite Device for STM32 Hardware Platform

3

2. Basics of Required Dependencies
2.1 What is a composite USB device?

1. Overview

The USB interface is extraordinarily complex, multi-level and multi-faceted. Anyone can be easily swayed
by	the	immensity	of	the	information	to	digest	while	working	on	a	USB	device.	The	specification	of	the	USB	
device along with all the respective “Class” devices is itself more than 1000 pages. Preparing the USB device
driver	from	scratch	and	providing	support	for	some	class-specific	USB	interfaces	require	a	lot	of	work	and	
time. However, many manufacturers provide a sophisticated ecosystem for their product family which
eases out the implementation by providing the framework or library. This document covers the aspects
of developing a USB Composite Device for STM32-based hardware using the existing STM32CubeIDE and
STM32 USB Device Driver Library.

The ST provides a very sophisticated IDE integration to develop the USB device driver. The STM32CubeIDE
tool supports the auto-generation of the code for the USB device for an individual Class. It provides
support	 for	many	 different	 class	 devices.	 But	 the	 tool	 does	 not	 support	 the	 creation	 of	 a	 composite	
device. However, once you digest the existing architecture of the USB device driver Library provided by ST
electronics	along	with	a	few	aspects	of	the	USB	Class	and	Descriptor	specification,	it	will	be	much	easier	
to prepare a Composite Device using the existing code from ST electronics. It will save a lot of time and
work to prepare the composite device. Hence, to develop a Composite Device Driver for the STM platform,
the audience is requested to at least have a basic understanding of USB device, Composite Device and
STM32 USB Library Code architecture.

The document tries to cover the maximum audience who are interested in USB composite device drivers
for the STM32 platform. Hence, all the necessary components are described with bare minimum details
in the basic details section. The document is divided into three parts:

All	individual	aspects	of	the	Composite	Device	Driver	are	sufficient	to	write	a	full-scale	book.	The	details	
provided	in	this	document	are	kept	bare	minimum	but	sufficient	to	keep	the	audience	engaged,	active	and	
interested. A working USB composite device of RNDIS + Audio + Virtual Com Port for High-Speed Interface
on the STM32H7XX series of processors has been created using these guidelines. The same example is
followed throughout the document. However, the audience can perform any combination of class drivers
for their required Composite Device using the provided guidelines.

Usually, one USB device implements only one functionality of any one class type. As an example, a USB
device can be either Mass Storage (Thumb Drive), Audio Device (USB Headphone/Microphone), Mouse
(CDC), or Serial Com Port (CDC). However, a Composite USB Device incorporates multiple functionalities in
a single USB device. As an example, RNDIS + Audio + Virtual Comport + Mass storage devices are accessed
through a single USB port of the target hardware.

A	composite	device-specific	detailed	information	is	not	available	in	the	USB	specification.	However,	it	can	
be	abstracted	as	a	part	of	the	 Interface	Association	Descriptor	Specification.	There	 is	 little	 information	
available	in	the	community	related	to	USB	composite	device	development.	It	becomes	exceedingly	difficult	
to	figure	out	what	to	explore	and	understand	in	specifications	to	develop	a	healthy	and	host-compatible	
composite	USB	device.	The	Composite	device	is	no	more	different	than	an	individual	USB	class	device	in	
terms	of	the	USB	specification.	The	ability	to	differentiate	the	functionality	and	their	associated	interfaces	
are the key to developing the USB composite Device. The major class driver can be incorporated into the
composite device. However, the user needs to take care of the bandwidth requirements and performance
of each functionality while creating the composite device. As an example, a Mass Storage Class in Full

• Basic Details related to the components of the USB Composite Device Driver Development
• Implementation of the USB Composite Device Driver for the STM32 platform
• Debugging and integrating the USB Composite Device Driver with the Application Layer

Guide for developing USB Composite Device for STM32 Hardware Platform

4

2.2 USB specification and descriptors
The	USB	 specification	 is	 a	 noticeably	 big	 document.	 It	 covers	many	 things	 for	 a	 variety	 of	 supported	
USB	class	interfaces.	However,	most	of	the	specifications	are	implemented	readily	by	the	OEM,	and	the	
audience is not required to go through all the details.

The following are the important descriptors that need to be understood well to prepare a composite
device.	The	Composite	Device	needs	these	descriptors	properly	defined	to	get	enumerated	and	work	with	
a host system.

Speed	USB	device	will	suffer	a	lot	in	throughput	if	audio	and	video	device	class	drivers	are	incorporated	
into the USB device as a composite device.

There	 are	 various	 fields	 and	 attributes	 for	 each	 Descriptor.	 Each	 attribute	 and	 field	 have	 incredibly	
significant	information	to	convey.	Even	a	one-bit	error	in	any	of	the	descriptor	fields	can	lead	to	the	failure	
of the USB device or its functional interface enumeration. Further details of them should be explored in
the “Descriptors” Section of the “USBnutshell” Guideline. Every individual interested in a Composite USB
device must at least go through the “USBnutshell” Guideline once to understand the concepts and details
of	important	aspects	of	USB	specification	more	simply.	

Device descriptor
It	describes	the	device.	Its	name,	manufacturer,	serial	number,	and	other	device-specific	information.	Each	
USB device should have only one Device Descriptor. String data is described by separate string descriptors
(String Descriptor).

Configuration descriptor
It	 describes	 various	 supported	 configurations	 of	 the	 USB	 device.	 A	 device	 can	 have	 one	 or	 more	
configurations.	 Each	 configuration	 determines	 the	 speed	 of	 communication	with	 the	 device,	 a	 set	 of	
interfaces	and	power	settings.	So,	for	example,	a	USB	device	can	have	multiple	configurations	to	support	
different	sampling	frequencies.	An	all-in-one	printer	may	have	different	configurations	to	support	different	
speeds and interfaces for communication interfaces.

Interface descriptor
It describes the interface of communication with the device. There can be several interfaces. For example,
different	functions	(MSC,	CDC,	HID)	will	implement	their	interfaces.	Some	functions	(for	example,	CDC	or	
DFU) implement several interfaces at once for their work. In our case of a composite device, we will need
to	implement	several	interfaces	from	different	functions	at	once	and	make	them	have	a	good	relationship	
with each other.

Endpoint descriptor
It	describes	the	communication	channel	within	a	specific	interface,	sets	the	packet	size	and	describes	the	
parameters of interrupts. Using endpoints, the actual data will be transmitted or received.

Interface association interface (IAD)
It describes the association of the interface with functionality. It is a mandatory descriptor for the composite
device. For a composite device, each functionality has its IAD descriptor to provide the associated interface
number,	class,	subclass,	and	device	protocol	type.	A	device	configuration	can	have	more	than	one	IAD.	
Each IAD must be located immediately before the interfaces in the interface group that the IAD describes.
The	following	figure	from	the	specification	is	enough	to	understand	the	IAD	usage	for	the	composite	USB	
device.

https://www.beyondlogic.org/usbnutshell/usb5.shtml
https://www.beyondlogic.org/usbnutshell/usb1.shtml
https://www.beyondlogic.org/usbnutshell/usb1.shtml

Guide for developing USB Composite Device for STM32 Hardware Platform

5

More information on the Interface Association Descriptor can be accessed here.

The	complete	USB	specification	by	the	OEM	can	be	searched	and	accessed		here.

Figure 2.1. Example Device Framework Using Interface Association Descriptors

https://www.usb.org/sites/default/files/iadclasscode_r10.pdf
https://www.usb.org/documents

Guide for developing USB Composite Device for STM32 Hardware Platform

6

2.3 USB driver for host system and individual device
The USB interface is host-based. The host initiates the request to access the device. Hence, there is a driver
required	to	initiate	and	handle	the	request	as	per	the	USB	specification	in	the	host	system.	There	is	also	a	
driver required on the device side to receive the request from the host system and provide the appropriate
response	to	the	request.	The	functionality	on	the	host	side	is	different	than	the	functionality	on	the	device	
side. This document only provides information on preparing the USB interface on the device side. The
host-side driver is usually available in all modern-day operating systems such as Windows, Mac OS, Linux
and	others.	However,	it	is	observed	that	each	operating	system	has	its	compatibility	specifications.	They	
also	have	their	own	set	of	rules	on	top	of	the	USB	specification	for	USB	device	operations.	It	has	been	
observed	during	the	composite	USB	device	development	that	a	final	and	complete	composite	USB	device	
works well with the Linux host system. However, the Windows system fails to even enumerate either the
entire device or a part of its functionality.

The reason to include this topic in this document is to make the audience aware that it is especially
important to understand the architecture and support of the host system when a device driver is being
developed for the Composite Device. In case of failure to enumerate the work of the developed USB
composite device’s interface in the intended host system may not necessarily be an issue with the USB
specification	 implementation	 at	 the	 target	 device	 driver	 side.	The	 target	 device	 driver	 implementation	
can	be	perfect	as	per	the	USB	specification	and	it	can	still	fail	to	work	with	the	specific	host	system.	This	
should further be diagnosed and debugged through the tools and techniques available for the targeted host
system. It has been observed that Linux is the most versatile and preferable development environment
for USB device driver development. The host driver of Linux has better and wider class support. The user
also	 has	 the	flexibility	 to	 customize	 and	 change	 it	 for	 the	 development	 of	 the	 targeted	 device	 driver.	
Linux provides a lot of inbuilt and free diagnostic and debugging tools to verify the USB composite device
implementation.

When all individual functional interfaces of the respected composite device are working well with the
host system, there is no change or update required in the USB host driver or at the host system for the
respective composite device with the same interfaces. As an example, a composite device having one
Virtual	Com	Port	and	One	Mass	Storage	interface	does	not	need	anything	specific	to	be	implemented	or	
taken care of on the host system side. Such a Composite Device will enumerate on its own without any
difficulty	and	works	fine.	The	system	will	show	two	different	functionalities	under	one	USB	device.	Usually,	
all operating systems support a Mass Storage Device and a Serial Com Port Device individually so the
Composite	Device	of	these	two	interfaces	will	work	without	any	difficulties	in	the	host	system.	For	the	
development of a Composite USB device, there is a possibility that the intended host system does not
support	the	class	functionality	of	the	device-specific	requirements.	In	such	cases,	the	host	driver	for	the	
required class should also be developed for the respective operating system.

2.4 STM32CubIDE
STM32CubeIDE is an exceptionally good integrated development tool for the STM-based processor. It
allows	the	users	to	have	a	 ready	 initialization	of	most	of	the	 interfaces	and	functionality.	 It	provides	a	
ready infrastructure for all the on-chip interfaces. Most of the time the user only needs to develop the
application-specific	interface	code.	The	example	Composite	Device	of	the	RNDIS	+	Audio	+	Virtual	Com	
Port is created through this tool.

It	is	included	in	this	document	for	ease	of	the	user	to	have	a	readily	available	user	interface	file	for	the	
individual USB interface of the composite device. The user is requested to generate a USB interface
functionality using the tool for all the required interfaces of the composite device.

There are particularly good user video guides available by the OEM for the tool. Visit the following links to
know more about the STM32CubeIDE:

https://youtu.be/eumKLXNlM0U

https://www.youtube.com/playlist?list=PLnMKNibPkDnFCosVVv98U5dCulE6T3Iy8

https://youtu.be/eumKLXNlM0U
https://www.youtube.com/playlist?list=PLnMKNibPkDnFCosVVv98U5dCulE6T3Iy8

Guide for developing USB Composite Device for STM32 Hardware Platform

7

2.5 STM32 USB device library architecture
The	USB	Device	Library	from	the	ST	is	well-organized	and	properly	layered.	The	following	is	the	summary	
of the architecture levels and their respective functionality.
• Class Driver:	They	implement	the	logic	of	a	specific	class	of	devices	-	CDC	for	virtual	COM	port,	MSC	

for	storage	devices,	HID	for	keyboards/mice	and	any	specific	device	with	a	user	interface.
• USB Core (usbd_core.c, usbd_ctlreq.c, usbd_ioreq.c): It implements the general logic of operation of

all classes of USB devices. It can send the requested descriptors to the host, process requests from
the	host	and	configure	the	USB	device.	It	also	redirects	data	streams	from	the	class	driver	level	to	the	
underlying levels and vice versa.

• USB HW Driver (usbd_conf.c): The overlying layers are platform-independent and work the same
way for several series of microcontrollers. The code does not have a low-level function that calls for
a	specific	microcontroller.	The	usbd_conf.c	file	implements	a	layer	between	the	USB	Core	and	HAL,	
a library of low-level drivers for the selected microcontroller. There are simple wrappers that redirect
calls from top to bottom and callbacks from bottom to top.

• HAL (stm32f1xx_hal_pcd.c, stm32f1xx_ll_usb.c): It is engaged in communication with the
microcontroller hardware, operates with registers and responds to interrupts.

Application

USB	Device	Configuration

Device Controller Driver (DCD)

Low Level Driver Core

USB Device HAL Driver

USB Device Core

Core

USB Requests

Lo
g/

D
eb

ug

I/O Requests

USB Device Core

(HID, MSC,
DFU, AUDIO,
...etc)

Reference:
stm32cube-usb-device-library-stmicroelectronics

There are also incredibly good user video guides
available by the OEM for the USB device library
architecture. Visit the following links if interested
to know more about the STM-provided USB Device
Library stack.

The following is a layout summary of the USB library layered architecture:
• USB Device file - Init and De-Init functionality
• Application Layer Interface File	–	usbd_class_if.c	to	be	prepared	by	the	User
• Class Driver – Individual Class driver available; Composite Class driver to be prepared by the User
• USB Core – some code changes are required for the Composite class
• USB HW Driver – Update Endpoint FIFO allocation for the Composite class
• HAL – No change is required for the Composite class

https://youtu.be/I1HfAkz-brc

https://www.youtube.com/playlist?list=PLnMKNibPkDnFFRBVD206EfnnHhQZI4Hxa

https://www.st.com/resource/en/user_manual/dm00108129-stm32cube-usb-device-library-stmicroelectronics.pdf#page=1
https://youtu.be/I1HfAkz-brc
https://www.youtube.com/playlist?list=PLnMKNibPkDnFFRBVD206EfnnHhQZI4Hxa

Guide for developing USB Composite Device for STM32 Hardware Platform

8

2.6 STM32 USB device library class drivers

Note:	The	user	can	also	find	example	projects	of	the	USB	device	implementation	in	the	repository.	As	an	
example, for the STM32H745 Discovery board, the example code for the DFU and HID standalone USB
device can be found at -

“%UserProfile%\STM32Cube\Repository\STM32Cube_FW_H7_V1.8.0\Projects\STM32H745I-DISCO\
Applications\USB_Device”	location.	The	example	program	will	provide	a	base	code	for	the	application-
level interface integration for the USB device.

Each	class	driver	has	its	configuration	descriptor	and	class-specific	interface	API	pointers	to	be	registered	
with the Core Library.

The Class Driver File usually has the following coding architecture:
• Class-specific	Interface	defining	structure	followed	by
• Class-specific	configuration	descriptor	followed	by
• Class-specific	interface	function	implementation

The ST OEM provides support for most of the generic device classes. The respective code can be found
in the GIT repository easily. If the STM32CubeIDE is installed and for one of the class USB device codes
is generated through the tool, then the entire repository is readily available on the local system at the
following locations in the Windows system.

%UserProfile%\STM32Cube\Repository

For the composite device project, the Firmware for the H7 series with revision 1.8.0 was used. It was
having	the	following	supported	class	drivers	available	locally	at	“%UserProfile%\STM32Cube\Repository\
STM32Cube_FW_H7_V1.8.0\Middlewares\ST\STM32_USB_Device_Library\Class.”

Guide for developing USB Composite Device for STM32 Hardware Platform

9

3. Implementation of the USB Composite Device Driver for the
STM32 Platform

3.1 Architecture of the default USB device with a single class

The STM32CubeIDE auto-generated code for the Audio Class Device for the STM32H745I Disc board shows
the following results when the USB device is plugged into the Windows system.

The Audio Driver is ready to enumerate and accept data from the Windows host system. The user needs to
consume the data available through the Audio class interfaces as per the application needs of the target
system.

Similarly, the virtual Com Port’s respective USB code base can also be easily created and tested out for
enumeration.

The	Control	and	code	flow	for	the	USB	module	is	as	per	the	following	diagram.

Within	the	main	function,	the	USB	device	initialization	MX_USB_DEVICE_Init	from	the	usb_device.c	is	called.	
It	performs	the	basic	USB	initialization	process.	Once	the	USB	Device	and	dependencies	are	initialized	and	
the USB device is attached to the host system, the enumeration process gets initiated.

The	enumeration	process	follows	the	host-to-device	control	flow.	Where	the	host	requests	information	
and the device provide it.

The required information during enumeration is available as part of the descriptor and class driver code
in	usbd_audio.c	file.

Guide for developing USB Composite Device for STM32 Hardware Platform

10

The	Usb_device.c	file	has	the	following	important	components	to	understand:

Main Application

USB HW Driver
usbd_conf.c

USB Audio Class Driver
usbd_audio.c

USB Device Init
usb_device.c

USB Init USB de-init

USB Audio Class Interface
usbd_audio_if.c

USB HAL Driver
stm32xxx_hal_pcd.c
stm23xxx_ll_usb.c

USB Core Library
usbd_core.c			usbd_ctlreq.c			usbd_ioreq.c

Guide for developing USB Composite Device for STM32 Hardware Platform

11

USBD_RegisterClass	(&hUsbDeviceFS,	&USBD_AUDIO)	

It	is	in	usb_core.c	file	which	registers	the	function	pointer	structure	of	the	Audio	Class	with	the	USB	Device	
Structure.

USBD_AUDIO_RegisterInterface	(&hUsbDeviceFS,	&USBD_AUDIO_fops_FS)

Is	in	usbd_audio.c	file	for	the	audio	class	driver	which	registers	the	structure	pointer	of	the	Audio	Class	
User Interface with the USB Device Structure.
Usbd_audio.c file has the following important components and layouts to process all the audio
class-related functionalities.

Guide for developing USB Composite Device for STM32 Hardware Platform

12

The	proposed	solution	for	the	composite	device	can	be	easily	visualized	as	per	this	architecture	diagram.	
The “application layer” as well as the “application interface layer” remain unchanged. The HAL driver
components also remain unchanged.

A new composite class (“SUDO”) driver in between the USB core library and individual class drivers
is placed. The idea is to have the new composite class driver as a switching portal. As each Class
Functionality will have its associated Interfaces and Endpoints, the Composite driver should be able to
redirect the request to the individual class driver based on the Interface Number or Endpoint number in
the argument.

To	create	the	Composite	USB,	all	the	components	connected	with	the	Red	Colored	control	flow	arrows	
in	the	diagram	need	to	be	modified,	upgraded,	or	created.	The	required	changes	are	explained	in	detail	in	
the following section.

3.2 Architecture for the composite USB device with multiple class

Main Application Layer
Audio Processing

Application Layer LWIP
and ETH stack

Application Layer
CLI interface

USB HW Driver
usbd_conf.c

USB Audio Class Driver File USB RNDIS Class Driver File USB VCP Class Driver File

USB Composite
Class Driver File

USB Device File
USB Init USB de-Init

USB Audio Class
interface File

USB RNDIS Class
interface File

USB VCP Class
Interface File

USB HAL Driver
stm32xxx_hal_pcd.c				
stm32xxx_II_usb.c

USB Core Library

Guide for developing USB Composite Device for STM32 Hardware Platform

13

Here is the list of things to do in code for the composite USB device development.

• Organize	and	gather	the	USB	device	respective	all	the	files	in	a	single	directory	with	a	proper	hierarchy	
and	segregation.	Rename	the	files	appropriately	if	needed.

• Create	a	new	set	of	source	files	for	the	Composite	class	driver	from	the	templates.
• Prepare	the	USB	composite	device	interface	and	endpoint	footprint	for	the	configuration	descriptor.
• Update the USB core library code to hold the multiple “class interface” structures and handle requests

based on the new parameters.
• Prepare	the	new	composite	class	driver	file.

• Prepare	 the	 composite	 class	 configuration	 descriptor	 by	 copying	 and	 appending	 configuration	
descriptors from the individual class drivers.
• Add the IAD descriptor before each class descriptor group.
• Update the class grouped descriptor for the interface number and Endpoint number.
• Update	the	descriptor	for	the	total	number	of	 interfaces,	Eps,	and	the	total	size	of	the	conf	

descriptor.
• Prepare the Composite Class Driver APIs to redirect the request from the core library to the individual

class driver.
• Update	the	individual	Class	Drivers	files	to	support	redirecting	functionality	of	the	Composite	Driver.

• Remove the structure holding the function pointers of the class driver.
• Remove	the	configuration	and	another	descriptor	for	the	class.
• Make all the class interface functions global.
• Find and replace the “class interface structure” (pClassData and pUserData)pointer that is renamed

as per the core library changes.
• Implement	Logic	for	the	EPO_RxReady	request	to	identify	the	associated	individual	class	as	there	is	no	

Interface Number or EndPoint Number available in the argument.
• USBD_CtlPrepareRx	Look	for	the	individual	class	driver	–	set	a	global	flag	that	the	next	EP0	receives	

a request for this class driver.
• Update	the	usb_device.c	file	

• Register the new composite class driver APIs and all the required “class interface” APIs structure
pointers.

• Prepare	the	usbd_desc.c	file	-
• Update the USB standard device descriptor.

• Update	the	usbd_conf.c	file	–	
• USBD_LL_Setup_Fifo()	 function	 to	 allocate	 the	 proper	 FIFO	 for	 each	 endpoint	 as	 per	 the	 new	

Endpoint Layout.
• Update	 the	 USBD_MAX_NUM_INTERFACES	 to	 have	 the	 maximum	 Interfaces	 in	 the	 Composite	

Device.

3.2.1 Reorganize and gather the USB Device’s respective files

It	is	better	to	create	a	new	directory	that	holds	all	the	files	and	dependencies	related	to	the	composite	
USB	device.	All	the	respective	files	should	be	copied	over	to	a	new	location	(Keep	the	original	unchanged	
for reference. It may help in the future for debugging and verifying).

Guide for developing USB Composite Device for STM32 Hardware Platform

14

3.2.2 Create a new set of files for the
composite class driver

In this example, the composite driver includes
RNDIS,	AUDIO	and	VCP.	New	files	are	created	from	
the	templates	class	driver	files	available	in	the	
repository.	They	are	renamed	as	usbd_rndis_audio_
vcp.c/.h.	It	is	advisable	to	create	these	files	from	
the templates as they incorporate all the curbs
and grubs required to be prepared for the class
driver.

3.2.3 Interface and endpoint footprint for
the USB composite device

By going through the individual class driver, the
user	can	easily	find	the	total	number	of	interfaces	
required for each class, as well as endpoint
requirements for each interface. Simply search for
the “bNumInterfaces” keyword in the respective
class	driver	“.c”	file	which	will	tell	you	about	the	
number of required interfaces. Similarly, search
for the “Endpoint” keyword, it will tell you about
the required endpoints for each interface. For
example,	in	the	usbd_cdc_rndis.c	file,	the	user	can	
find	the	total	Interfaces	for	the	class,	Interface	
type, Interface ID and endpoint required in each
interface by simply going through the code and
comments.

Explore the following code snippet and try to
understand the details of the highlighted code:

USB composite device
• Applications interface

• Audio
• RNDIS
• VCP	 (renamed	 usb_cdc_if.c/.h	 to	 usb_cdc_

vcp_if.c/.h)
• Class driver

• Composite	class	(move	all	the	files	of	drivers	
into	the	common	directory)	(renamed	usbd_
cdc.c/.h	to	usbd_cdc_vcp.c/.h)

• Core library
• USBD_Conf
• USB_Device

For the current example: Files for the “USB
Composite	Device”	can	be	reorganized	as	the	
following:

Guide for developing USB Composite Device for STM32 Hardware Platform

15

Guide for developing USB Composite Device for STM32 Hardware Platform

16

Class driver Required
interface Interface ID

Required
endpoint host -
client

End point id Endpoint packet
size (bytes)

End point FiFo
size (Pkt size/16)

RNDIS Control interface 0
Out – receive Not required NA NA

In - transmit 0x81 16 1

RNDIS Data interface 1
Out - receive 0x02 64 Rx_Fifo

RNDIS 0x82 64 4

Audio Control interface 2
Out - receive Not required NA NA

Audio Not required NA NA

Audio Data interface 3
Out - receive 0x03 192 Rx_Fifo

Audio Not required NA 1

VCP Control interface 4
Out – receive Not required NA NA

VCP 0x84 16 1

VCP Data interface 5
Out - receive 0x05 64 Rx_Fifo

In - transmit 0x85 64 4

Using	this	method,	the	user	needs	to	figure	out	the	following	aspects	of	the	composite	device	class	to	
prepare	the	configuration	descriptor.
• How many total interfaces are required for the composite device class?
• What will be the order of the interface ID and associated device Class?
• For each class what is the interface ID number?
• For each Interface what are the required endpoints?
Based on this, the user can prepare the Interface and associated endpoint footprint required for the
composite device class.

The	above	table	is	the	first	step	to	prepare	the	configuration	descriptor	for	the	composite	device.	There	
might	be	more	than	one	configuration	descriptor	in	the	class	driver	file.	It	is	observed	that	each	class	
driver provides a descriptor for High Speed, Full Speed, and another Speed compatibility. Hence, there
are	three	sets	of	configurations	descriptors	available.	As	per	the	user’s	needs,	the	user	can	prepare	the	
respective	configuration	map.

3.2.4 Update the USB core library code to hold the multiple “class interface” structures

As	per	the	device	initialization	code,	each	interface	needs	to	be	registered	with	the	core	library.	During	
the	registration	functionality,	the	Core	library	holds	the	interface-specific	details	on	the	“USB	device	
Handle.” Refer to the following code and Highlighted line.

Table: Footprint of interfaces and endpoints for the composite device

Guide for developing USB Composite Device for STM32 Hardware Platform

17

Hence, to support and register the multiple class driver, the user needs to have multiple place holders
in	the	structure.	Hence,	update	the	“USBD_HandleTypeDef”	structure	to	hold	the	required	class	driver	
pointers.

Respectively, rename these pointers throughout the code swiftly. The pClassData and pUserData in the
VCP class driver should be replaced with pClassVcpData and pUserVcpData, respectively. Similar changes
should also be made for other class drivers of the composite device as well.

3.2.5 Prepare new composite class driver file

The	user	has	all	the	required	info	to	prepare	the	Composite	Class	Driver	file.	The	new	file	should	hold	
a	configuration	descriptor	and	composite	class	APIs	to	redirect	the	request	from	the	core	library	to	the	
respective class driver.

3.2.5.1 Prepare configuration descriptor

Preparing	configuration	descriptor	for	the	composite	device	is	considerably	easy	as	each	class	driver	
already	has	its	configuration	descriptor.	The	user	does	not	need	to	write	it	from	scratch.	The	user	needs	
to	copy	the	configuration	descriptor	from	the	respective	class	and	join	them	together	with	the	help	of	
the Interface Association Descriptor. On top of this, the user also needs to revisit the composite device
configuration	descriptor	to	update	the	total	number	of	interfaces,	total	size	of	configuration	descriptor,	
interfaces, and endpoint numbers for each IAD interface.

Guide for developing USB Composite Device for STM32 Hardware Platform

18

The user needs to do following three things:
• Add IAD descriptor with appropriate data for each individual class descriptor group in the beginning.
• Update the class grouped descriptor for the interface number and endpoint number.
• Update	the	descriptor	for	the	total	number	of	interfaces,	Eps,	and	total	size.
Note: The descriptor holds extremely sensitive information about the device. The USB host will ask for
configuration	descriptor	and	based	on	the	configuration	descriptor	the	host	will	further	initialize	the	
device. Hence, even a single byte error can lead to failure of enumeration for the entire composite device
or	individual	class	driver.	The	user	must	have	necessary	knowledge	about	the	fields	that	require	changes	
for	the	configuration	descriptor.

Guide for developing USB Composite Device for STM32 Hardware Platform

19

3.2.5.2 Prepare composite class driver function interface

Preparing the composite class driver interfaces are also considerably easy. The user needs to redirect
the function call to its respective class driver based on the associated endpoint number or the interface
number.

For example, the DataIn, DataOut, IsoIn, and IsoOut interfaces have arguments as endpoint numbers. As
per the details from the footprint table, it is already known which corresponds to which class driver.

For	example,	the	setup	interface	is	having	USBD_SetupReqTypedef	*req	as	its	argument.	Through	the	
req->bmRequest	and	req->wIndex,	the	user	can	find	the	respective	class	driver.	The	request	can	be	of	
interface	type	or	endpoint	type.	User	must	filter	both	out	for	each	class	driver.

Guide for developing USB Composite Device for STM32 Hardware Platform

20

Guide for developing USB Composite Device for STM32 Hardware Platform

21

3.2.6 Update existing individual class driver and associated interface files

The	individual	class	driver	files	require	modification	to	support	the	composite	class	driver.	There	are	
no logical changes or functional changes required in the individual class driver and its corresponding
interface	files.	However,	many	cosmetic	and	compatibility	changes	are	required	to	be	carried	out.	

The following is the list of changes to be made:
• Remove the structure holding function pointers of the individual class driver.
• Remove	the	configuration	and	other	descriptor	for	the	individual	class.
• Remove	the	“GetCfgDesc”	and	“GetDeviceQualifierDescinterfaces”	interfaces	for	the	individual	class.
• Update all the class interface respective functions from static to global.
• Find and replace the “class interface structure” (pClassData and pUserData) pointer that is renamed as

per	core	library	changes	in	the	class	driver	file.
• Add	all	class-specific	interface	declarations	into	the	respective	header	files.
• Update the interface number and endpoint number respective macros of each class driver as per the

new footprint for the composite class.
• Find and replace the “class interface structure” (pClassData and pUserData) pointer that is renamed as

per	the	core	library	changes	in	the	corresponding	interface	file	(usbd_<class>_if.c/.h	file).

Guide for developing USB Composite Device for STM32 Hardware Platform

22

Note:
1. Use	#if	0	to	omit	out	or	remove	code	from	the	existing	individual	class	driver	file.	
2. Use	find	and	replace	for	(pClassData	and	pUserData).
3. Use	find	and	replace	to	change	the	static	scope	into	global	for	all	the	class	driver	interfaces	that	are	

being called from the composite class.

3.2.7 Update for EPO RxReady request

Update	existing	individual	class	driver	files	to	determine	that	the	EPO_RxReady	is	about	to	be	executed.	
Set	a	global	flag	for	such	an	indication.	Use	the	global	flag	to	get	an	indication	of	which	driver’s	
respective	function	call	should	be	called.	As	per	the	USB	specification,	all	the	EP0	respective	commands	
will always be initiated with the request of the class respective Setup command. The individual class
driver	always	prepares	the	buffer	for	receiving	data	through	the	EP0	afterwards.

The	user	needs	to	find	the	USBD_CtlPrepareRx	function	at	individual	class	driver	and	set	the	respective	
class	specific	EP0	request	flag.	The	composite	class	driver	API	can	use	this	flag	to	redirect	the	EP0	
service call to its respective individual driver and reset it afterwards.

3.2.7.1 Update individual class driver to set the EP0 Rx ready functionality

The	user	needs	to	find	the	USBD_CtlPrepareRx	function	at	the	individual	class	driver	and	set	the	
respective	class	specific	EP0	request	flag.

3.2.7.2 Update composite class driver the EPO_RxReady interface to handle the request

The	EPO_RxReady	interface	at	the	composite	driver	should	access	the	respective	individual	class	driver’s	
EP0	request	flag	and	based	on	it	call	their	respective	serving	interfaces.

Guide for developing USB Composite Device for STM32 Hardware Platform

23

3.2.8 Update usb_device.c file

The	usb	device.c	file	registers	the	function	pointer	for	the	class	driver	and	the	user	space	class	interface	
function	pointers.	As	per	the	newly	created	composite	driver	file	and	updated	existing	class	driver	files,	
the user is supposed to change the call. Refer to the below code snippet that was changed to register
the composite USB device class and individual class interfaces for the user space. The user needs
to	include	the	class	driver	and	its	respective	interface	files	at	the	top.	At	the	main	function,	the	user	
requires to make appropriate changes to register all the class interfaces.

Guide for developing USB Composite Device for STM32 Hardware Platform

24

Guide for developing USB Composite Device for STM32 Hardware Platform

25

3.2.9 Update usbd_desc.c file

The	device	descriptor	file	is	a	generic	file	that	can	be	used	across	multiple	class	drivers.	The	file	
“usbd_desc.c”	holds	the	USB	standard	device	descriptor.	Change	the	DeviceClass,	DeviceSubClass,	and	
DeviceProtocol attributes to 0xFF, 0x02, and 0x01 respectively for the composite device.

3.2.10 Update usbd_conf.c/.h file

These	are	wrapper	files	that	play	a	vital	role	between	the	HAL	driver	and	USB	composite	device	
architecture. There is no functional change needed at any of the logical implementation for this section
except two places.

3.2.10.1 Update the usbd_conf.h file

Change the supported maximum number of interfaces by the driver architecture. It should be set as per
the table showing the footprint of Interfaces and Endpoints. For this example, it has been changed to 6.

Guide for developing USB Composite Device for STM32 Hardware Platform

26

3.2.10.2 Update the usbd_conf.c file

Update	the	USBD_LL_Init	function	to	incorporate	the	changes	needed	for	the	low-level	fifo	to	get	aligned	
with the new EndPoint mapping. Refer to the table showing the footprint of the Interfaces and Endpoints
to	figure	out	the	FIFO	size	allocation.

Guide for developing USB Composite Device for STM32 Hardware Platform

27

4. Debugging and Integrating with Application Layer

4.1 Integrating with application layer
Each	 individual	 class	 driver	 has	 its	 associated	 user	 space	 application	 interface	 file.	 The	 interface	 file	
provides	integration	with	the	application	layer.	The	ST	OEM	provides	almost	the	complete	interface	file	for	
all	the	supported	class	drivers.	The	user	can	easily	find	them	alongside	the	class	driver	file.	The	user	can	
also	find	the	enhanced	version	with	the	example	program	for	the	respective	processor	family.	As	per	the	
user	requirements,	it	can	be	further	enhanced	and	improved.	The	interfaces	registered	through	the	usb_
device.c	files	will	be	accessed	during	the	device	class	operation.	The	integration	for	each	individual	class	
driver for the application layer is usually extremely easy when you understand the call back interfaces
functionality required within the call.

Providing details on the implementation for the application layer interface for each class driver can not
be covered in this scope. The application layer is always user and requirement dependent. It cannot be
generalized.	This	is	the	extended	part	of	the	composite	USB	device.	Mostly	the	developer	struggles	while	
preparing the composite class and enumeration. However, when a developer has issues integrating the
functionality of the class driver with the application layer, it is advisable to refer to the respective available
example program from the OEM for that individual class driver.

4.2 Debugging the issues for composite device driver
Debugging such complex implementation and USB enumeration process can be considered one of the
most	challenging	parts	during	the	implementation.	As	there	are	many	different	areas	which	can	lead	to	
failure	of	the	USB	composite	device	enumeration,	it	is	crucial	that	the	user	can	find	out	the	probable	cause	
of area. Development is preferable on Linux platform or Windows platform.

4.2.1 Debugging on Linux platform
1. Use command prompt for enumeration related issues

a.	Use	lsusb	command	to	find	out	the	list	of	the	successful	USB	enumerated	interfaces.

Note:	It	can	also	be	used	to	read	details	about	the	device	and	configuration	descriptor.t

b.	Use	lsusb	command	to	find	out	the	list	of	the	successful	USB	enumerated	interfaces.

c.	Use	the	dmesg	to	find	out	what	is	happening	within	the	kernel	during	the	enumeration	process

Note:	It	can	help	to	find	out	whether	the	enumeration	of	each	individual	class	interface	is	successful	
or not.

In case of failure during the enumeration of class interface, it can point to possible root cause or issue.

2. Use	the	wireshark	tool	to	figure	out	the	enumeration	issues	that	the	Linux	command	line	is	not	able	
to	pinpoint.	When	the	developer	does	not	find	any	helpful	information	from	the	Linux	command	line	
for	the	enumeration	or	USB	device	failure,	wireshark	is	very	robust,	efficient,	and	free	tool	to	debug	
the issues between the Host and Device. The developer needs to capture the session between the
Host	and	Device.	Based	on	the	session	data,	the	user	can	analyze	and	figure	out	the	root	cause	of	
the issue.

Guide for developing USB Composite Device for STM32 Hardware Platform

28

Guide for developing USB Composite Device for STM32 Hardware Platform

29

4.2.2 Debugging on Windows platform
There is extremely limited support available on the Windows platform to debug the USB debugging or
functionality related issues. Following is the list of points that the developer can try to reach the root cause
of the issue.
1. Use	tdd.exe	file	to	get	the	USB	device	descriptor	

Thesycon’s descriptor dumper is a Windows’ utility that displays the USB descriptors of any USB
device.	The	dump	is	in	plain	text	format	and	can	be	saved	to	a	file	or	copy-pasted	into	an	email.	This	
is the most useful tool for developers and technical support personnel.

2. Use	Wireshark	tool	to	figure	out	the	enumeration	issues
When	a	developer	does	not	find	any	helpful	information	from	the	descriptor	of	the	USB	device,	
Wireshark	is	very	robust,	efficient,	and	free	tool	to	debug	the	issues	between	the	Host	and	Device.	
The developer needs to capture the session between the Host and device. Based on the session
data,	users	can	analyze	and	figure	out	the	root	cause	of	the	issue.

Guide for developing USB Composite Device for STM32 Hardware Platform

30

FOLLOW US /einfochips /einfochipsltd /einfochips /einfochipsindia

[1] https://en.wikipedia.org/wiki/USB
[2] https://www.beyondlogic.org/usbnutshell/usb1.shtml
[3] https://www.usb.org/document-library/usb-20-specification
[4] https://www.usb.org/sites/default/files/iadclasscode_r10.pdf
[5] https://wiki.st.com/stm32mcu/wiki/Introduction_to_USB_with_STM32
[6] https://www.st.com/resource/en/user_manual/dm00108129-stm32cube-usb-device-library-stmicroelectronics.pdf#page=1
[7] https://sudonull.com/post/68144-CDC-MSC-USB-Composite-Device-on-STM32-HAL
[8] https://www.programmersought.com/article/18127793400/
[9] https://en.wikipedia.org/wiki/Host_controller_interface_(USB,_Firewire)
[10] https://wiki.ubuntu.com/Kernel/Debugging/USB
[11] https://www.youtube.com/watch?v=C8UKrIKqH78
[12] https://youtu.be/eumKLXNlM0U
[13] https://www.youtube.com/playlist?list=PLnMKNibPkDnFCosVVv98U5dCulE6T3Iy8
[14] https://youtu.be/I1HfAkz-brc	
[15] https://www.youtube.com/playlist?list=PLnMKNibPkDnFFRBVD206EfnnHhQZI4Hxa

References

Vishalkumar Padalia

(Senior Technical Lead, eInfochips Inc.)

Vishalkumar Padalia is working as Senior Technical Lead at eInfochips - an arrow company. He has more
than	15	years	of	experience	in	Embedded	System	Design	and	verification.	He	has	worked	for	more	than	
9	years	for	Airborne	Software	Development	and	verification.	His	experience	 includes	development	and	
verification	of	 software	 for	Display	Processing	Mission	Computer,	 Flight	Cockpit	Display	System,	 Flight	
Mission Computers, Primary Flight Control Computer and so on. Vishalkumar holds a Bachelor of Engineering
degree in Electronics and Communication.

About The Author

	1. Overview
	2. Basics of required Dependencies
	2.1 What is a Composite USB Device?
	2.2 USB specification and Descriptors
	2.3 USB Driver for Host System and Individual Device
	2.4 STM32CubIDE
	2.5 STM32 USB Device Library Architecture
	2.6 STM32 USB Device Library Class Drivers

	3.0 �Implementation of the USB Composite Device Driver for the
STM32 platform
	3.1 Architecture of the default USB device with a single class
	3.2 Architecture for the composite USB device with multiple class

	4 Debugging and Integrating with Application Layer
	4.1 Integrating with Application Layer
	4.2 Debugging the issues for Composite Device Driver

