
C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

The 0b Binary Literal Prefix in Standard C: History,
Rationale, and Usage
1. Introduction
The C programming language provides various ways to represent integer constants
directly in source code, known as integer literals. While decimal (123), octal (0173),
and hexadecimal (0x7B) literals have long been part of the language, the ability to
specify integer constants using binary notation (base-2) with a 0b or 0B prefix is a
more recent addition. This report examines the history of binary literals in C,
detailing when the 0b prefix was officially introduced into the standard, exploring
the reasons for its absence in the original Kernighan & Ritchie (K&R) definition of C,
and assessing the safety and portability implications of using this feature in
modern C development.

2. Standardization in C23
The 0b and 0B prefixes for binary integer literals were formally incorporated into
the C standard with the publication of C23, officially designated as ISO/IEC
9899:2024.1 This standard, which supersedes C17 (ISO/IEC 9899:2018), was
developed under the informal name C2x starting around 2016 and was published
on October 31, 2024.1

The introduction of binary literals allows programmers to represent base-2
numbers directly in code, such as 0b10101010, which is equivalent to the
hexadecimal value 0xAA or the decimal value 170.1 This feature is particularly
useful in contexts involving bit-level manipulation, such as embedded systems
programming, hardware interfacing, and implementing low-level communication
protocols.2

Alongside the literal syntax, C23 introduced related features to enhance support
for binary number representation:

● printf Format Specifier: A %b conversion specifier was added to the printf
family of functions to output unsigned integer values in binary format.1

● scanf Format Specifier: Similarly, a %b conversion specifier was added to the
scanf family to parse binary input strings.1 It's important to note that the %i
specifier in scanf, which automatically detects the base of the input (decimal,
octal via 0 prefix, hexadecimal via 0x prefix), was also updated to recognize
the 0b/0B prefix for binary input in C23-compliant libraries.1

● String Conversion Functions: Support for parsing binary strings prefixed
with 0b or 0B was added to the strtol and wcstol function families.1

The C23 standard also introduced other literal enhancements, such as the single

Page 1 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

quote (') as a digit separator for improved readability (e.g.,
0b1111'0000'1010'0101) and new suffixes (wb, uwb) for bit-precise integer types
(_BitInt(N)).1

To check for C23 standard compliance in the preprocessor, the predefined macro
__STDC_VERSION__ is defined with the value $202311L$.9 Code can use this macro
to conditionally compile C23-specific features:

C

#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 202311L
 // C23 code using 0b literals or other C23 features
 unsigned int mask = 0b00110011;
 printf("Mask: %b\n", mask);
#else
 // Fallback for older C standards
 unsigned int mask = 0x33; // Equivalent hex literal
 // Manual binary printing or no binary output
#endif

It is crucial to understand that utilizing C23 features, including binary literals and
associated library functions like printf with %b or scanf with %i recognizing 0b,
requires not only a C23-compliant compiler (using flags like -std=c23 or -std=c2x)
but potentially also an updated C standard library (like glibc version 2.38 or later for
certain input/output functionalities) that implements these C23 additions.7 Without
the necessary library support, parsing binary input via scanf("%i",...) might fail even
when compiled in C23 mode.7

3. Why 0b Was Absent in K&R C
The original definition of C, documented in the first edition of "The C Programming
Language" by Brian Kernighan and Dennis Ritchie (K&R C, 1978), included support
for decimal, octal (prefix 0), and hexadecimal (prefix 0x or 0X) integer literals.10
However, it lacked a standard way to represent binary literals. This omission was
not an oversight but rather a reflection of the language's history, design
philosophy, and the computing environment of the time.

Historical Context and Language Lineage:

C evolved from the B language, which itself was derived from BCPL.12 BCPL used #
as a prefix for octal constants and later added implementation-specific prefixes

Page 2 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

like #x for hexadecimal.12 B simplified this by using a leading 0 to denote octal
constants, partly because # was repurposed as an operator in B.12 However, B did
not standardize a hexadecimal prefix, likely because its initial target platform, the
DEC PDP-7, had a word size (18 bits) naturally suited to octal representation.13
Some early B implementations even allowed non-standard "octal" digits like 8 and
9, treating 019 as 1×82+9×81+3=1×64+9×8+3=64+72+3=139 (decimal 17).12

C inherited the 0 prefix for octal directly from B.12 The 0x prefix for hexadecimal
was added later during C's development, driven by the architecture of the PDP-11
(C's primary development platform) and the increasing importance of 8-bit bytes.13
The PDP-11 featured 16-bit words and byte-addressable memory, making
hexadecimal a convenient notation for representing memory addresses, byte
values, and bit patterns aligned to 4-bit boundaries (nibbles).16 The 0x prefix was
present by the time the first edition of K&R was published in 1978 10, possibly
originating around the time of Unix Version 7 and the Portable C Compiler (pcc) in
the mid-to-late 1970s.13

The Case Against Binary Literals in Early C:

Several factors contributed to the lack of binary literals in early C:

1. Verbosity: Binary representations are significantly longer and more
cumbersome to write and read than their octal or hexadecimal equivalents. For
example, the value 255 is 0b11111111 in binary, 0377 in octal, and 0xFF in
hexadecimal.17

2. Lack of Perceived Convenience: For the common word sizes of the era (e.g.,
12, 16, 18, 36 bits) and typical systems programming tasks, octal (grouping 3
bits) and hexadecimal (grouping 4 bits) often provided a more practical
shorthand for representing machine instructions, data fields, or memory
layouts than raw binary.16 While hexadecimal maps perfectly to 8-bit bytes
(two hex digits per byte), octal was particularly natural on machines with word
sizes divisible by 3, like the PDP-7 or PDP-8.12

3. No Direct Precedent: C inherited octal notation from B, but B lacked a
standard hex or binary prefix. BCPL had #x but no standard binary prefix for C
to readily adopt.12

4. Parser Simplicity: While likely a minor factor, introducing another prefix (0b)
would have added a small amount of complexity to the lexical analysis phase
of the compiler compared to just distinguishing decimal, 0-prefixed octal, and
0x-prefixed hexadecimal.14

The selection of numeric bases in early C demonstrates a pragmatic design
philosophy. Features were included based on their direct utility for the target
hardware (primarily DEC PDP series computers) and the common programming
tasks of the time (systems programming, operating system development), rather

Page 3 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

than striving for mathematical completeness by including every possible base.12

The notion of "convenience" in representing numbers has evolved. While octal and
hexadecimal were convenient for mapping to the word and byte structures of
machines like the PDP-11, the subsequent rise of microcontrollers and
hardware-level programming, where direct manipulation of individual bits is
frequent, increased the demand for a more direct binary representation.2 In these
contexts, 0b literals offer superior clarity for visualizing bit patterns compared to
mentally translating from hex or octal, ultimately leading to the adoption of 0b first
through compiler extensions and later into the C standard itself.1

4. Compiler Extensions: The Pre-Standard Era of 0b
Long before the C23 standard formally adopted binary literals, several C compilers
introduced the 0b/0B prefix as a non-standard extension. This period of extension
support played a crucial role in demonstrating the feature's utility and establishing
the syntax that would eventually be standardized.

GCC and Clang as Forerunners:

The GNU Compiler Collection (GCC) was a pioneer in supporting binary constants.
It introduced the 0b and 0B prefixes as an extension for both C and C++ code.3
This support dates back to GCC version 4.3, released in March 2008.22 This
significantly predates the C++14 standard (which also adopted 0b) and, of course,
C23.

Clang, often aiming for compatibility with GCC extensions, also implemented
support for 0b/0B literals early on.19 Support was present in Clang version 2.9 (as
indicated by C23 feature support tables) or by version 3.4 (late 2013).9 Like GCC,
Clang treated this as an extension for C modes prior to C23. With the advent of
C23 support, Clang version 19 removed the -Wgnu-binary-literal diagnostic group,
recognizing the feature as standard C rather than a GNU extension.24

Other compilers also provided this feature as an extension. For instance, newer
versions of the IAR C/C++ Compiler support 0b literals in C code as a
vendor-specific extension.25

MSVC's Approach:

The Microsoft Visual C++ (MSVC) compiler appears to have taken a different path.
Documentation and C standard support tables consistently associate MSVC's
support for 0b literals with the C++14 standard, first implemented in Visual Studio
2015 (MSVC toolset version 19.0).9 There is little evidence to suggest that MSVC
offered 0b as a C-specific extension prior to its C++14 implementation or its

Page 4 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

eventual support for C23 features. MSVC historically prioritized C++ standard
conformance and added C standard features (beyond C89/C90) more slowly, often
when they overlapped with C++ requirements.28 Support for C11 and C17 modes
was only formally introduced in Visual Studio 2019 version 16.8.30 While the
cppreference C23 feature table 9 lists MSVC 19.0 (VS 2015) under the C23 binary
literal entry (N2549), this likely reflects the initial C++14 implementation date rather
than specific C-mode support as an extension or full C23 conformance at that
time. Developers targeting C11 or C17 with MSVC should not expect 0b literal
support unless using C++ compilation modes or potentially newer, C23-conformant
versions of the compiler.

Influence on Standardization:

The widespread availability and adoption of 0b literals as extensions in popular
compilers like GCC and Clang were instrumental in their eventual standardization.
These extensions served several purposes:

1. Demonstrated Utility: Years of use, particularly in the embedded systems
community, proved the feature's value for clarity and convenience in bit-level
programming.3

2. Established Syntax: The consistent use of the 0b/0B prefix created a de
facto standard that was easy for the C++ and C standards committees to
adopt.1

3. Provided Implementation Experience: Compilers acted as testbeds, allowing
implementation details and potential issues to be understood before formal
standardization.

This pattern, where compiler vendors implement features as extensions,
developers utilize them, and the standards committee later considers formalizing
the successful ones, highlights the role of compilers as crucial incubators in the
evolution of the C language. However, the differing approaches of GCC/Clang
(readily providing C extensions) versus MSVC (more closely tying C features to C++
standard support) illustrate varying compiler philosophies regarding non-standard
language additions.

5. Using 0b Literals: Safety, Portability, and Best Practices
The introduction of 0b binary literals into standard C brings convenience,
particularly for code involving bit manipulation. However, understanding the
implications for portability and safety is crucial for effective use.

Pre-C23 Usage: Non-Standard and Non-Portable

Using 0b or 0B prefixes in C code compiled without targeting the C23 standard

Page 5 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

relies entirely on compiler-specific extensions.3 Such code is not
standard-compliant C (for C17 or earlier) and introduces significant portability
risks:

● Compilation Failures: The code will fail to compile on any
standard-conforming C compiler that does not support the 0b extension, or if
the extension is disabled (e.g., using strict conformance flags like -std=c17
-pedantic-errors).21

● Toolchain Dependence: Projects become tied to specific compilers (like GCC
or Clang) or compiler versions known to support the extension.20 Switching
compilers or updating toolchains might break the build.

● Collaboration Challenges: Maintaining codebases intended for diverse
environments becomes difficult if non-standard features are used.

For code requiring portability across compilers or adherence to older C standards
(C17, C11, C99, C89), 0b literals should be avoided. Standard-compliant alternatives
include:

● Hexadecimal Literals: Often the best compromise, as hex digits map directly
to 4-bit nibbles. Comments can clarify the intended binary pattern: unsigned
char mask = 0xF0; // 0b11110000.17

● Bitwise Operations: Using shifts and ORs can explicitly construct the desired
bit pattern: unsigned int flags = (1 << 7) | (1 << 0); // Represents 0b10000001.
This is standard but can become verbose.34

● Macros/Constants: Defining constants using standard literals can improve
readability, though macros have pitfalls:
C
// Prefer const variables over macros when possible
static const unsigned char OPT_ENABLE = 0x01; // 0b00000001
static const unsigned char OPT_MODE_A = 0x08; // 0b00001000
#define BIT_PATTERN 0xAA // Less safe alternative
Some older workarounds involved complex macros to simulate binary literals,
but these are generally discouraged now.25

C23 Usage: Requirements and Considerations

To use 0b literals as a standard C feature, the following conditions must be met:

● C23 Compliant Compiler: The compiler must support the C23 standard.1

● C23 Mode Enabled: Compilation must explicitly target C23 using the
appropriate compiler flag (e.g., -std=c23 or the potentially earlier -std=c2x for
GCC and Clang).4 Consult compiler documentation for the correct flag.

● Updated Standard Library (Potentially): As mentioned previously, using
associated library features like printf("%b") or scanf recognizing 0b might
require a C standard library version that implements C23 features.7

Page 6 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

● Toolchain Consistency: Ensure that all development, testing, and deployment
environments utilize C23-compliant toolchains if the code relies on these
features.

Compiler Support for 0b in C Mode

The following table summarizes the support for 0b binary literals in C mode for
major compilers, based on available information. Note that standard C23 support is
relatively new and may still be evolving across toolchains.

Compiler Extension

Support Since
(Version)

C23 Standard
Support Flag

C23 Support
Since (Version)

Notes

GCC 4.3 22 -std=c23 /
-std=c2x

11+ (Partial/Full)
9

GCC 11 added
basic 0b
support under
C2x flags. Full
C23 feature
support
accumulated
across versions
11-15+.

Clang 2.9 9 -std=c23 /
-std=c2x

9+ (Partial/Full) 9 Clang 9 added
basic 0b
support under
C2x flags. Full
C23 feature
support
accumulated
across versions
9-20+. Clang 19
removed
-Wgnu-binary-lit
eral warning.24

MSVC Likely None
(Tied to C++14)

/std:c23 (if
available)

VS 2015 (19.0)
(?)

MSVC docs link
0b to C++14 (VS
2015).9 C11/C17
support started
in VS 2019
16.8.30 C23
support,
including 0b for
C mode, likely

Page 7 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

requires a
recent version
(VS 2022+) and
the appropriate
/std flag. The VS
2015 date in 9 is
likely for C++
mode.

IAR C/C++
Compiler

Newer versions
25

Check
Documentation

Check
Documentation

Supported as a
C language
extension in
recent versions.

Note: Version numbers indicate the first version providing at least partial support
for the feature as specified. Full C23 conformance may require later versions.

Practical Use Cases

Binary literals significantly improve code clarity in specific scenarios:

● Bitmasks and Flags: Defining and manipulating bit flags becomes more
intuitive: options |= 0b00010010; // Enable option 1 and option 4.36

● Hardware Register Configuration: Directly setting bits in hardware control or
status registers in embedded development: PORTB_CTRL = 0b11000001; // Set
pins 0, 6, 7 as outputs.2

● Bit-Level Protocols: Defining constants for network packets or serial
communication where specific bit layouts are crucial.2

● Educational Contexts: Visually demonstrating bitwise operations, binary
arithmetic, and data representation.

Recommendations for Safe and Portable Usage

● Targeting C23: If the project explicitly targets C23 and the toolchain
(compiler, standard library, build system) fully supports it, use 0b literals freely
where they enhance clarity. Verify support and use the correct compiler flags
(e.g., -std=c23). Use __STDC_VERSION__ >= 202311L for conditional
compilation if needed.9

● Requiring Backward Compatibility (C17 or earlier): Avoid 0b literals in
code intended to be portable across different compilers or standard versions.
Stick to standard hexadecimal literals (with comments for clarity) or bitwise
shift/OR operations. Prefer static const variables over #define for defining
reusable bit patterns.

● Mixed Environments/Libraries: For libraries needing broad compatibility, the
safest approach is to avoid 0b. If using 0b conditionally is desired, employ
preprocessor checks based on __STDC_VERSION__ for standard C23 mode or

Page 8 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

potentially compiler-specific macros (__GNUC__, __clang__) to detect
extension support, falling back to standard methods otherwise. This adds
complexity and maintenance overhead.

The concept of "safety" when using 0b involves both technical correctness
(portability, standard compliance) and code maintainability (clarity). While 0b
literals undeniably improve clarity for bit-oriented tasks, reducing the chance of
errors compared to mentally parsing hexadecimal or complex bitwise expressions 3,
this benefit must be weighed against the portability constraints if C23 is not the
baseline standard.

Furthermore, the long history of 0b as a common compiler extension creates a
potential gap between established practice and formal standardization. Codebases
developed over the years using GCC or Clang might implicitly rely on these
extensions being enabled by default (e.g., via -std=gnu17 instead of -std=c17).
Migrating such code to strictly conforming C23 mode (-std=c23 -pedantic-errors)
or to compilers lacking the extension (like potentially older versions of MSVC in C
mode) could lead to unexpected build failures, requiring explicit handling of the
previously non-standard feature.20

6. Conclusion
The journey of binary literals (0b/0B) into the C standard culminates with their
inclusion in C23 (ISO/IEC 9899:2024).1 Their absence in K&R C stemmed from the
historical context of C's development, the influence of the PDP-11 architecture
favoring octal and hexadecimal notations, and a pragmatic focus on immediate
utility over numerical base completeness.12

For over a decade prior to standardization, 0b literals gained popularity as
non-standard extensions, primarily in GCC (since v4.3) and Clang (since v2.9),
proving their value for enhancing code readability and reducing errors in bit-level
programming, especially in embedded systems.3 This widespread use and
established syntax paved the way for their adoption in C++14 33 and subsequently
C23.

The primary benefit of using 0b literals is improved clarity and expressiveness
when working directly with bit patterns.3 However, their use demands careful
consideration of portability.

Final Recommendations:

● For projects targeting C23, developers should embrace 0b literals where they
improve code clarity, ensuring their entire toolchain (compiler and standard
library) supports C23 and using the appropriate compilation flags (e.g.,

Page 9 of 12

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

-std=c23).
● For projects requiring backward compatibility with C17, C11, or earlier

standards, or needing to run across diverse compilers (including potentially
older MSVC versions in C mode), 0b literals must be avoided to maintain
portability. Standard alternatives like hexadecimal literals (with comments) or
explicit bitwise operations should be used instead.

Ultimately, the decision hinges on project requirements, target environments, and
toolchain capabilities. Verifying compiler and library support for C23 features is
essential before relying on them in production code.

Works cited

1. C23 (C standard revision) - Wikipedia, accessed on April 27, 2025,
https://en.wikipedia.org/wiki/C23_(C_standard_revision)

2. Binary (0b) and Hexadecimal (0x) Literals - Read the Docs, accessed on April
27, 2025,
https://utat-ss.readthedocs.io/en/master/c-programming/binary-hex-literals.ht
ml

3. Binary constants (Using the GNU Compiler Collection (GCC)), accessed on
April 27, 2025, https://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html

4. Binary Notation in C23 | C For Dummies Blog, accessed on April 27, 2025,
https://c-for-dummies.com/blog/?p=6173

5. Catch-23: The New C Standard Sets the World on Fire - ACM Queue, accessed
on April 27, 2025, https://queue.acm.org/detail.cfm?id=3588242

6. A cheatsheet of modern C language and library features. - GitHub, accessed
on April 27, 2025, https://github.com/AnthonyCalandra/modern-c-features

7. How to take binary literal input in C : r/C_Programming - Reddit, accessed on
April 27, 2025,
https://www.reddit.com/r/C_Programming/comments/1j9brdp/how_to_take_bi
nary_literal_input_in_c/

8. C23: a slightly better C - Daniel Lemire's blog, accessed on April 27, 2025,
https://lemire.me/blog/2024/01/21/c23-a-slightly-better-c/

9. C23 - cppreference.com, accessed on April 27, 2025,
https://en.cppreference.com/w/c/23

10. The C Programming Language Ritchie & kernighan - Color Computer Archive,
accessed on April 27, 2025,
https://colorcomputerarchive.com/repo/Documents/Books/The%20C%20Prog
ramming%20Language%20%28Kernighan%20Ritchie%29.pdf

11. The C programming Language - Physics Courses, accessed on April 27, 2025,
http://courses.physics.ucsd.edu/2014/Winter/physics141/Labs/Lab1/The_C_Pro
gramming_Language.pdf

12. Reasoning behind the syntax of octal notation in Java?, accessed on April 27,
2025,
https://softwareengineering.stackexchange.com/questions/221797/reasoning-
behind-the-syntax-of-octal-notation-in-java

13. Where and when did the `0x` convention for hexadecimal literals originate?,

Page 10 of 12

https://en.wikipedia.org/wiki/C23_(C_standard_revision)
https://utat-ss.readthedocs.io/en/master/c-programming/binary-hex-literals.html
https://utat-ss.readthedocs.io/en/master/c-programming/binary-hex-literals.html
https://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html
https://c-for-dummies.com/blog/?p=6173
https://queue.acm.org/detail.cfm?id=3588242
https://github.com/AnthonyCalandra/modern-c-features
https://www.reddit.com/r/C_Programming/comments/1j9brdp/how_to_take_binary_literal_input_in_c/
https://www.reddit.com/r/C_Programming/comments/1j9brdp/how_to_take_binary_literal_input_in_c/
https://lemire.me/blog/2024/01/21/c23-a-slightly-better-c/
https://en.cppreference.com/w/c/23
https://colorcomputerarchive.com/repo/Documents/Books/The%20C%20Programming%20Language%20%28Kernighan%20Ritchie%29.pdf
https://colorcomputerarchive.com/repo/Documents/Books/The%20C%20Programming%20Language%20%28Kernighan%20Ritchie%29.pdf
http://courses.physics.ucsd.edu/2014/Winter/physics141/Labs/Lab1/The_C_Programming_Language.pdf
http://courses.physics.ucsd.edu/2014/Winter/physics141/Labs/Lab1/The_C_Programming_Language.pdf
https://softwareengineering.stackexchange.com/questions/221797/reasoning-behind-the-syntax-of-octal-notation-in-java
https://softwareengineering.stackexchange.com/questions/221797/reasoning-behind-the-syntax-of-octal-notation-in-java

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

accessed on April 27, 2025,
https://retrocomputing.stackexchange.com/questions/15897/where-and-when
-did-the-0x-convention-for-hexadecimal-literals-originate

14. Why are hexadecimal numbers prefixed with 0x? - Stack Overflow, accessed
on April 27, 2025,
https://stackoverflow.com/questions/2670639/why-are-hexadecimal-numbers
-prefixed-with-0x

15. K&R C handling the octals - Stack Overflow, accessed on April 27, 2025,
https://stackoverflow.com/questions/19901347/kr-c-handling-the-octals

16. PDP-11 architecture - Wikipedia, accessed on April 27, 2025,
https://en.wikipedia.org/wiki/PDP-11_architecture

17. Why do people use Hexadecimal and Octal? : r/learnprogramming - Reddit,
accessed on April 27, 2025,
https://www.reddit.com/r/learnprogramming/comments/w1uq3/why_do_peopl
e_use_hexadecimal_and_octal/

18. Hexadecimal - Wikipedia, accessed on April 27, 2025,
https://en.wikipedia.org/wiki/Hexadecimal

19. Binary Literals in the C++ Core Language - Open-std.org, accessed on April 27,
2025, https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3472.pdf

20. Using binary numbers in C : r/embedded - Reddit, accessed on April 27, 2025,
https://www.reddit.com/r/embedded/comments/kitqfe/using_binary_numbers_
in_c/

21. c++ - As Binary literal is introduced in c++14..but it could used in
C++98/C++03/C++11, accessed on April 27, 2025,
https://stackoverflow.com/questions/59037375/as-binary-literal-is-introduced-
in-c14-but-it-could-used-in-c98-c03-c11

22. The "Binary Formatter" and using binary literals for values >8bits - Arduino
Forum, accessed on April 27, 2025,
https://forum.arduino.cc/t/the-binary-formatter-and-using-binary-literals-for-
values-8bits/991017

23. Binary literals? - c++ - Stack Overflow, accessed on April 27, 2025,
https://stackoverflow.com/questions/537303/binary-literals

24. Clang 19.0.0git Release Notes - ROCm Documentation, accessed on April 27,
2025,
https://rocm.docs.amd.com/projects/llvm-project/en/latest/LLVM/clang/html/R
eleaseNotes.html

25. Using binary integer literals in C source - My Pages - IAR, accessed on April 27,
2025,
https://mypages.iar.com/s/article/Using-binary-integer-literals-in-C-source

26. Numeric, boolean, and pointer literals (C++) | Microsoft Learn, accessed on
April 27, 2025,
https://learn.microsoft.com/en-us/cpp/cpp/numeric-boolean-and-pointer-liter
als-cpp?view=msvc-170

27. Binary literals? - Development - VCV Community, accessed on April 27, 2025,
https://community.vcvrack.com/t/binary-literals/5171

28. Is there any option to switch between C99 and C11 C standards in Visual
Studio?, accessed on April 27, 2025,
https://stackoverflow.com/questions/48981823/is-there-any-option-to-switch-

Page 11 of 12

https://retrocomputing.stackexchange.com/questions/15897/where-and-when-did-the-0x-convention-for-hexadecimal-literals-originate
https://retrocomputing.stackexchange.com/questions/15897/where-and-when-did-the-0x-convention-for-hexadecimal-literals-originate
https://stackoverflow.com/questions/2670639/why-are-hexadecimal-numbers-prefixed-with-0x
https://stackoverflow.com/questions/2670639/why-are-hexadecimal-numbers-prefixed-with-0x
https://stackoverflow.com/questions/19901347/kr-c-handling-the-octals
https://en.wikipedia.org/wiki/PDP-11_architecture
https://www.reddit.com/r/learnprogramming/comments/w1uq3/why_do_people_use_hexadecimal_and_octal/
https://www.reddit.com/r/learnprogramming/comments/w1uq3/why_do_people_use_hexadecimal_and_octal/
https://en.wikipedia.org/wiki/Hexadecimal
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3472.pdf
https://www.reddit.com/r/embedded/comments/kitqfe/using_binary_numbers_in_c/
https://www.reddit.com/r/embedded/comments/kitqfe/using_binary_numbers_in_c/
https://stackoverflow.com/questions/59037375/as-binary-literal-is-introduced-in-c14-but-it-could-used-in-c98-c03-c11
https://stackoverflow.com/questions/59037375/as-binary-literal-is-introduced-in-c14-but-it-could-used-in-c98-c03-c11
https://forum.arduino.cc/t/the-binary-formatter-and-using-binary-literals-for-values-8bits/991017
https://forum.arduino.cc/t/the-binary-formatter-and-using-binary-literals-for-values-8bits/991017
https://stackoverflow.com/questions/537303/binary-literals
https://rocm.docs.amd.com/projects/llvm-project/en/latest/LLVM/clang/html/ReleaseNotes.html
https://rocm.docs.amd.com/projects/llvm-project/en/latest/LLVM/clang/html/ReleaseNotes.html
https://mypages.iar.com/s/article/Using-binary-integer-literals-in-C-source
https://learn.microsoft.com/en-us/cpp/cpp/numeric-boolean-and-pointer-literals-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/numeric-boolean-and-pointer-literals-cpp?view=msvc-170
https://community.vcvrack.com/t/binary-literals/5171
https://stackoverflow.com/questions/48981823/is-there-any-option-to-switch-between-c99-and-c11-c-standards-in-visual-studio

C Binary Literal Prefix STM32World, Lars Bøgild Thomsen <lth@stm32world.com>

between-c99-and-c11-c-standards-in-visual-studio
29. C11 and C17 Standard Support Arriving in MSVC : r/C_Programming - Reddit,

accessed on April 27, 2025,
https://www.reddit.com/r/C_Programming/comments/iswbcl/c11_and_c17_stan
dard_support_arriving_in_msvc/

30. C11 and C17 Standard Support Arriving in MSVC - C++ Team Blog, accessed on
April 27, 2025,
https://devblogs.microsoft.com/cppblog/c11-and-c17-standard-support-arrivi
ng-in-msvc/

31. C11 and C17 Standard Support Arriving in MSVC : r/cpp - Reddit, accessed on
April 27, 2025,
https://www.reddit.com/r/cpp/comments/isusdb/c11_and_c17_standard_suppo
rt_arriving_in_msvc/

32. Install C11 and C17 support in Visual Studio - Learn Microsoft, accessed on
April 27, 2025,
https://learn.microsoft.com/en-us/cpp/overview/install-c17-support?view=msv
c-170

33. C++14 - Wikipedia, accessed on April 27, 2025,
https://en.wikipedia.org/wiki/C%2B%2B14

34. Avoid GCC/version specific compiler construct (binary literals) · Issue #372 ·
sass/libsass, accessed on April 27, 2025,
https://github.com/sass/libsass/issues/372

35. Longer Bit Contants, Please - Suggestions for the Arduino Project, accessed
on April 27, 2025,
https://forum.arduino.cc/t/longer-bit-contants-please/852928

36. C#7: Binary Literals and Numeric Literal Digit Separators - somewhat abstract,
accessed on April 27, 2025,
https://blog.somewhatabstract.com/2017/01/02/c7-binary-literals-and-numeri
c-literal-digit-separators/

Page 12 of 12

https://stackoverflow.com/questions/48981823/is-there-any-option-to-switch-between-c99-and-c11-c-standards-in-visual-studio
https://www.reddit.com/r/C_Programming/comments/iswbcl/c11_and_c17_standard_support_arriving_in_msvc/
https://www.reddit.com/r/C_Programming/comments/iswbcl/c11_and_c17_standard_support_arriving_in_msvc/
https://devblogs.microsoft.com/cppblog/c11-and-c17-standard-support-arriving-in-msvc/
https://devblogs.microsoft.com/cppblog/c11-and-c17-standard-support-arriving-in-msvc/
https://www.reddit.com/r/cpp/comments/isusdb/c11_and_c17_standard_support_arriving_in_msvc/
https://www.reddit.com/r/cpp/comments/isusdb/c11_and_c17_standard_support_arriving_in_msvc/
https://learn.microsoft.com/en-us/cpp/overview/install-c17-support?view=msvc-170
https://learn.microsoft.com/en-us/cpp/overview/install-c17-support?view=msvc-170
https://en.wikipedia.org/wiki/C%2B%2B14
https://github.com/sass/libsass/issues/372
https://forum.arduino.cc/t/longer-bit-contants-please/852928
https://blog.somewhatabstract.com/2017/01/02/c7-binary-literals-and-numeric-literal-digit-separators/
https://blog.somewhatabstract.com/2017/01/02/c7-binary-literals-and-numeric-literal-digit-separators/

	The 0b Binary Literal Prefix in Standard C: History, Rationale, and Usage
	1. Introduction
	2. Standardization in C23
	3. Why 0b Was Absent in K&R C
	4. Compiler Extensions: The Pre-Standard Era of 0b
	5. Using 0b Literals: Safety, Portability, and Best Practices
	6. Conclusion
	Works cited

