FreeRTOS on STM32

CMSIS_OS API

T.0.M.A.S — Technically Oriented Microcontroller Application Services
v1.7

K ' ’ life.augmented

Agenda

* FreeRTOS

* QOperating system: whatis ... ?

« Basic features

« CMSIS_OS APl vs FreeRTOS API
* FreeRTOS and STM32CubeMX

» Configuration

» Memory allocation

» Scheduler

« Tasks

 Intertask communication
Queues (messages, mail)

« Semaphores (binary, counting)
« Signals
* Resources management

 Mutexes
* Software Timers

» Advanced topics (hooks, stack overflow protection, gatekeeper task)

« Debugging
» Low power support (tickless modes)

» Footprint

Lys

life.augmented

Operating System
whatis ... ?

What is Task?

- Itis C function: START
* |t should be run within infinite loop, like:
for(;;)
{
/* Task code */

}

Running

* It has its own part of stack, and priority

* It can be in one of 4 states (RUNNING, Blocked
BLOCKED, SUSPENDED, READY)

* Itis created and deleted by calling API functions

Lys

life.augmented

What is scheduler?

* The scheduler is an algorithm determining which task to execute.
* |Is select one of the task being ready to be executed (in READY state)

« There are few mechanisms controlling access to CPU for tasks (timeslice, preemption, idle)
* In FreeRTOS round-robin scheduling algorithm is implemented

* Round-robin can be used with either preemptive or cooperative multitasking

Priority level Priority level

High priority High priority
Task2

> _

time time

Task2]

Lys

lifs.qugmented

What is OS heap?

Data memory

start| HEAP (for main

application)
Queue storage area
Queue control block
HEAP (for FreeRTOS) ~848

QUEUE 1

free memory

STACK (for main
application and IRQs)

end

Lys

life.augmented

FreeRTOS
basic features

life.augmented

About FreeRTOS (1/2)

* Market leading RTOS by Real Time Engineers Ltd.

* Professionally developed with strict quality management
« Commercial versions available: OpenRTOS and SafeRTOS

* Documentation available on www.freertos.org

* Free support through forum (moderated by RTOS author Richard Barry)

life.augmented

http://www.freertos.org/

About FreeRTOS (2/2)

* FreeRTOS is licensed under a modified GPL and can be used in commercial
applications under this license without any requirement to expose your proprietary
source code. An alternative commercial license option is also available.

* FreeRTOS license details available on :
http://www.freertos.org/a00114 .html

* In the STM32Cube firmware solution FreeRTOS is used as real time operating
system through the generic CMSIS-OS wrapping layer provided by ARM. Examples
and applications using the FreeRTOS can be directly ported on any other RTOS
without modifying the high level APIs, only the CMSIS-OS wrapper has to be

changed in this case.

Lys

lifs.qugmented

http://www.freertos.org/a00114.html

FreeRTOS - Main features

* Preemptive or cooperative real-time kernel
» Tiny memory footprint (less than 10kB ROM) and easy scalable
* Includes a tickless mode for low power applications

» Synchronization and inter-task communication using
* message queues
 binary and counting semaphores
* mutexes
« group events (flags)

- Software timers for tasks scheduling
 Execution trace functionality

‘7’ - CMSIS-RTOS API port

life.augmented

FreeRTOS - resources used

Core resources:

« System timer (SysTick) — generate system time (time slice)
» Two stack pointers: MSP, PSP

Interrupt vectors:
« SVC - system service call
* PendSV - pended system call (switching context)
« SysTick — System Timer

Flash memory:
- 6-10kB

RAM memory:
- ~0.5kB + task stacks:

Lys

life.augmented

System Service Call (SVC)

» SVC - system service call / supervisor call

* [t is an instruction and an exception. Once the svc instruction is executed, SVD
IRQ is triggered immediately (unless there is higher priority IRQ active)

» SVC contains an 8bit immediate value what could help to determine which OS
service Is requested.

* Do not use SVC inside NMI or Hard Fault handler

life.augmented

Pended System Call (PendSV)

- PendSV is a priority programmable exception triggered by SW (write to the in
ICSR register @OxXEOOOEDO4)

SCB->ICSR |= (1<<28)

* |t is not precise (in contrary to SVC). After set a pending bit CPU can execute a
number of instructions before the exception will start. Usually it is used like a
subroutine called i.e. by the system timer in OS

life.augmented

System timer

* |t is necessary to trigger a context switching in regular time slots.

* In CortexM architecture 24bit downcounting SysTick is used for this purpose (it can
be changed — more details in Tickless mode section)

« System timer is triggering PendSV SW interrupt to perform context switch.

* In case we are using HAL library it is strongly recommended to change its
TimeBase timer from Systick to other timer available (i.e. TIM6)

life.augmented

FreeRTOS sources file structure

File / header
Directory

role

croutine.c / croutine.h
\Source
\Source\include

Co-routines functions definitions. Efficient in 8 and 16bit architecture. In 32bit architecture usage of tasks is suggested

event_groups.c / event_groups.h
A\Source
A\Sourcelinclude

heap_x.c
A\Source\portable\MemMang

Memory management functions (allocate and free memory segment, three different approaches in heap_1, heap_2, heap_3 and heap__

files)

N

list.c / list.h
\Source
\Source\include

List implementation used by the scheduler.

port.c / portmacro.h
A\Source\portable\xxx\yyy

Low level functions supporting SysTick timer, context switch, interrupt management on low hw level — strongly depends on the platform
(core and sw toolset). Mostly written in assembly. In portmacro.h file there are definitions of portTickType and portBASE_TYPE

queue.c / queue.h/ semphr.h
\Source
\Source\include

Semaphores, mutexes functions definitions

tasks.c / task.h
\Source
\Source\include

Task functions and utilities definition

timers.c / timers.h
\Source
\Source\include

Software timers funcitons definitions

FreeRTOS.h
\Source\include

Configuration file which collect whole FreeRTOS sources

FreeRTOSConfig.h

Configuration of FreeRTOS system, system clock and irq parameters configuration

FreeRTOS sources file structure

File / header role

Directory

heap_x.c Memory management functions (allocate and free memory segment, three different approaches in heap_1, heap_2, heap_3 and heap_4
\Source\portable\MemMang files)

list.c / list.h List implementation used by the scheduler.

\Source

A\Source\include

port.c / portmacro.h
\Source\portable\xxx\yyy

Low level functions supporting SysTick timer, context switch, interrupt management on low hw level — strongly depends on the platform
(core and sw toolset). Mostly written in assembly. In portmacro.h file there are definitions of portTickType and portBASE_TYPE

queue.c / queue.h / semphr.h
\Source
\Source\include

Semaphores, mutexes functions definitions

tasks.c / task.h
\Source
\Source\include

Task functions and utilities definition

FreeRTOS.h
\Source\include

Configuration file which collect whole FreeRTOS sources

FreeRTOSConfig.h

Configuration of FreeRTOS system, system clock and irq parameters configuration

Lys

lifs.qugmented

FreeRTOS
native APl

life.augmented

FreeRTOS API conventions

* Prefixes at variable names:
C — char
S — short
1 —long
X — portBASE_TYPE defined in portmacro.h for each platform (in STM32 it is long)
U — unsigned
P - pointer

* Functions name structure (vTaskPrioritySet () is taken as example):

prefix | file name | function name
v Task PrioritySet

V — void
X —returns portBASE_TYPE
pPxXv — private

Lys

life.augmented

FreeRTOS API conventions - macros

* Prefixes at macros defines their definition location:

e port — (ie. portMAX DELAY) -> portable.h

- task — (ie. task ENTER CRITICAL) ->task.h

* pd — (ie. pdTRUE) -> projdefs.h

- config —(ie. configUSE PREEMPTION) ->FreeRTOSConfig.h
° err — (ile. errQUEUE FULL) -> projdefs.h

« Common macro definitions:

* pdTRUE 1
* pdFALSE 0
* pdPASS 1
* pdFAIL 0

Lys

life.augmented

FreeRTOS
CMSIS OS API

life.augmented

FreeRTOS

CMSIS-OS API

CMSIS-0OS APl is a generic RTOS interface for Cortex-M processor based devices

Middleware components using the CMSIS-OS API are RTOS independent, this allows an easy linking to any
third-party RTOS

The CMSIS-OS API defines a minimum feature set including
» Thread Management

» Kernel control

« Semaphore management

* Message queue and mail queue

« Memory management

The STM32Cube comes with an implementation of the CMSIS-RTOS for FreeRTOS.

For detailed documentation regarding CMSIS-OS refer to:
http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html

Lys

life.augmented

http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html

FreeRTOS

CMSIS-0OS FreeRTOS implementation

 Implementation in file cmsis-o0s.c (found in folder:
\Middlewares\Third_Party\FreeRTOS\Source\CMSIS RTOS)

 The following table lists examples of the CMSIS-RTOS APIs and the FreeRTOS APIs used to implement
them

API category CMSIS_RTOS API FreeRTOS API

Kernel control osKernelStart vTaskStartScheduler

Thread management osThreadCreate xTaskCreate

Semaphore osSemaphoreCreate vSemaphoreCreateBinary
xSemaphoreCreateCounting

Mutex osMutexWait xSemaphoreTake

Message queue osMessagePut xQueueSend
xQueueSendFromISR

Timer osTimerCreate xTimerCreate

K’I * Note: CMSIS-0OS implements same model as FreeRTOS for task states

life.augmented

FreeRTOS

CMSIS-0OS API, main data structures

- Most of the functions returns 0SSt atus value, which allows to check whether the function is
completed or there was some issue (cmsis_os.h file)

« Each OS component has its own ID:
* Tasks: 0sThreadId (mappedto TaskHandle t within FreeRTOS API)

Queues: osMessageQId (mappedto QueueHandle t within FreeRTOS API)

Semaphores: osSemaphoreId (mappedto SemaphoreHandle t within FreeRTOS API)

Mutexes: osMutexId (mappedto SemaphoreHandle t within FreeRTOS API)

SW timers: osTimerId (mappedto TimerHandle t within FreeRTOS API)

- Delays and timeouts are given in ms:
* 0 — no delay
* >0 —delay in ms

« 0xFFFFFFFF — wait forever (defined in osWaitForever within cmsis_os.h file)

Lys

life.augmented

CMSIS OS AP

return values osStatus 1/2

- Most of the functions returns 0 s Status value, below you can find return values on function
completed list (cmsis_os.h file)

0sOK
osEventSignal
oskEventMessage
osEventMail
osEventTimeout

0s status reserved

Lys

life.augmented

0

8

0x10

0x20

0x40
OX/7/FFFFFFF

no error or event occurred

signal event occurred
message event occurred
mail event occurred
timeout occurred

prevent from enum down-size compiler optimization

CMSIS OS API

. return values osStatus 2/2
* Error status values osStatus (cmsis_os.h)

osStatus description
value

osErrorParameter parameter error: a mandatory parameter was missing or specified an incorrect object.
0x80

osErrorResource resource not available: a specified resource was not available

0x81

osErrorTimeoutResource resource not available within given time: a specified resource was not available within the
0xC1 timeout period.

osErrorISR not allowed in ISR context: the function cannot be called from interrupt service routines
0x82

osErrorISRRecursive function called multiple times from ISR with same object.

0x83

osErrorPriority system cannot determine priority or thread has illegal priority

0x84

osErrorNoMemory system is out of memory: it was impossible to allocate or reserve memory for the operation
0x85

osErrorValue value of a parameter is out of range.

0x86

0sError0S unspecified RTOS error: run-time error but no other error message fits.

OxFF
life.augmented f

FreeRTOS
and STM32CubeMX

life.augmented

FreeRTOS in STM32CubeMX

changing Timebase source for HAL

 Start a new project within STM32CubeMX for selected MCU (or open already prepared existing one
— important is to have printf() implementation).

* Go to System Core section -> SYS and change Timebase source (for HAL) from SysTick to other
timeri.e. TIM6

Pinout & Configuration Clock Configuration

Additional Softwares

Cl| V| SY5S Mode and Configuration
Debug |Seria| Wire

Dy e : o SstemWakeUpt
DIMA O system Wake-Up 2
ﬁlﬁl]DG O system Wake-Up 2
NWIC O system Wake-Up 4

r O system Wake-Up 5
TsC Power Voltage Detector In |Disable
WWDG

VREFBUF Mode Disable
Timebase Source |TII"u'1E5

m Analog >

life.augmented

FreeRTOS in STM32CubeMX

adding FreeRTOS middleware

* Go to Pinout&Configuration tab, select Categories>MiddleWare->FreeRTOS and check Enabled

box in Mode window

options ey v | FREERTOS Mode and C

Enabled

* Go to Configuration tab to configure FreeRTOS
parameters — refer to next slides for details

System Core >

Analog > @
Reset Configuration

Timers >
. 5 :
Connectivity [Configure the following parameters:
Multimedia ? Q [Search (CiHF | @ ®
Security 5 ~ \ersions
FreeRTOS version 10.0.1
Computing 5 CM3I5-RTOS version 1.02
~ Kernel settings
Middlewara . LSE_PREEMPTION Enable:
CPU_CLOCK_HZ System
v TICK_RATE_HZ 1000
” MINIMAL_STACK_SIZE 128 Wo
MAK_TASK_MNAME_LEM 16

life.augmented
USE_16_BIT_TICKS Disable

FreeRTOS configuration

STM32CubeMX

m STMA2CubeMX Lintitled®: 5TMI2L476VGTx 3214

- E
STME ﬁ L]
. Fili: Window Hedp L

Harne VG Tx (I ASCOVERY " Untiled - Pinout & Configuration
Clock Configuration Praject Manager

Additicnal Sclwares ~ Pinoul

m | w FREEHTOS Mode and Corfigaration : TF inowt vew HH Systam viaw
N e ‘

: 3
Hle Middlewaras
System Cors 3 2 “' =
[

Analog >

Timess

rfig paramaes 5 - .) System Core Bmnalug Timers Conneclivity K
Corneckaaty

[Configurs the falowing paramatars |

FraaF arsion .

Compltin ’ e o m

S < Kemel getings

Midcerwars " USE_PREEMPTICN Sriabled m

. . TICK_RATE_HZ 1006
FATES WaE_PRICRITIES T
WIMPAAL _STACK_SITE 126 Wards
HEH_TASH_MAME_LEN 16
USE_15_BIT_TCKS Digabied
IDLE_SHOULD_YIELD Criabled
USE_MUTEXE Disakied
USE RECUSSNE MUTERES Disakied
USE_COUNTING _SEMSPHORES Nsakied
DUFUE_REGISTRY_SIFE]
USE_AFFLICATION_TASK_TAG Diszied
ENABLE_BaCKMWARD_COMPATIDILITY Enabled
USE_PORT_JPTIMSED_TASK_SELECTIOH Criabled
USE_TICKLESS_IDLE Disabied
USE TASK HOTIFICATIONS =niabled
RECORN_STALK_HIGH_ADORESS s akiad
= Mamaory management sefings
” Wamaory Allncatian Twmamic

TOTAL_HEAP_SIZE 3000 Bxtes

].iie.c:ugmenfed Wemaory Managemant scheme leap_d

FreeRTOS configuration in STM32CubeMX

FREERTOS Mode and Configuration
Mode

- Config parameters tab
. Configuration
» Kernel settings
« RTOS components settings
* Memory setup
~ \ersions
* Include parameters tab
g . =~ Kernel settings
* Include some additional functions, USE_PREEMPTION Enabled
not necessary for FreeRTOS run noRATE e o
MAX_PRIORITIES 7
MIMIMAL_STACK_SIZE 128 Words
- Tasks and Queues tab e
. IDLE_SHOULD_YIELD Enabled
» Creation of tasks and queues USE_NUTEXES Disavled
USE_RECURSIVE_MUTEXES Disabled
USE_COUNTIMNG_SEMAPHORES Disabled
- QUEUE_REGISTRY_SIZE 3
° Tlmers and Semaphores tab USE_APPLICATION_TASK_TAG Disabled
EMABLE BACKWARD_COMPATIBILITY Enabled
» Creation of timers and semaphores (binary, counting) b maess e
USE_TASK_MOTIFICATIONS Enabled
RECORD_STACK_HIGH_ADDRESS Disabled
* Mutexes tab e et seings
. TOTAL_HEAP_SIZE 3000 Bytes
® Creatlon Of mUteXGS Memory Management scheme heap_4
~ Hook function related definitions
USE_IDLE_HOOK Enabled
USE_TICK_HOOK Disabled
‘,’ USE_MALLOC_FAILED_ HOOK Enabled

) USE_DAEMON_TASK_STARTUP_HOOK Disabled
life.augmented CHECK_FOR_STACK_OVERFLOW Disabled

FreeRTOS
configuration

life.augmented

FreeRTOS

Configuration options

- Configuration options are declared in file FreeRTOSConfig.h

* Important configuration options are:

configUSE_PREEMPTION

configCPU_CLOCK_HZ

configTICK_RATE_HZ

configMAX_PRIORITIES

configTOTAL_HEAP_SIZE
configLIBRARY_LOWEST_INTERRUPT_PRIORITY

Enables Preemption

CPU clock frequency in Hz

Tick rate in Hz

Maximum task priority

Total heap size for dynamic allocation

Lowest interrupt priority (OXF when using 4 cortex preemption bits)

configLIBRARY_MAX SYSCALL_INTERRUPT_PRIORITY Highest thread safe interrupt priority (higher priorities are lower numeric value)

Lys

life.augmented

Kernel settings

» Use preemptlon “ Kernel settings
| use preemPTION Enabled]
* If enabled use pre-emptive scheduling ~PU_CLOCK HZ SystemGoreCloc
TICK_RATE_HZ 1000
MAX_PRIORITIES 7
/ Priority level \ MINIMAL_STACK_SIZE 128 Words
Create Task2 Task2 suspended MAX_TASK_MNAME_LEM 16
High priority USE_16_BIT_TICKS Disabled
Task2 IDLE_SHOULD_YIELD Enabled
USE_MUTEXES Disabled
Low priority USE_RECURSIVE_MUTEXES Disabled
> USE_COUNTING_SEMAPHORES Disabled
\ time / QUEUE_REGISTRY_SIZE 8
USE_APPLICATION_TASK_TAG Disabled
ENABLE_BACKWARD_COMPATIBILITY Enabled
* If disabled use co-operative scheduling USE_PORT_OPTIMISED_TASK_SELECTION Enabled
— USE_TICKLESS_IDLE Disable
/ Priority level \ USE_TASK_MOTIFICATIONS Enabled
. . Create Task2 Task1 suspended RECORD_STACK_HIGH_ADDRESS Disabled
High priority .
=~ Memory management settings
[Task?2] Memory Allocation Dynamic
TOTAL_HEAP_SIZE 3000 Bytes
Low priority Memory Management scheme heap_4
~ Hook function related definitions

\ time / USE_IDLE_HOOK Enabled

r’ USE_TICK_HOOK Disabled

life.augmented

FreeRTOS memory management
HEAP

life.augmented

Heap (1/6)

FreeRTOS uses a region of memory called Heap (into the RAM) to allocate memory for tasks, queues, timers , semaphores,
mutexes and when dynamically creating variables. FreeRTOS heap is different than the system heap defined at the compiler
level.

When FreeRTOS requires RAM instead of calling the standard malloc it calls PvPortMalloc (). When it needs to free
memory it calls PvPortFree () instead of the standard free ().

FreeRTOS offers several heap management schemes that range in complexity and features. It includes five sample memory
allocation implementations, each of which are described in the following link :

* http://www.freertos.org/a00111.html

The total amount of available heap space is set by configTOTAL_HEAP_SIZE which is defined in FreeRTOSConfig.h.

The xPortGetFreeHeapSize () API function returns the total amount of heap space that remains unallocated (allowing
the configTOTAL_HEAP_SIZE setting to be optimized). The total amount of heap space that remains unallocated is also
available with xFreeBytesRemaining variable for heap management schemes 2 to 5.

Lys

life.augmented

http://www.freertos.org/a00111.html

Heap (2/6)

» Each created task (including the idle task) requires a Task Control Block (TCB) and a stack that are allocated
in the heap.

« The TCB size in bytes depends of the options enabled in the FreeRTOSConfig.h.
« With minimum configuration the TCB size is 24 words i.e 96 bytes.
» if configUSE_TASK_NOTIFICATIONS enabled add 8 bytes (2 words)
+ if configUSE_TRACE_FACILITY enabled add 8 bytes (2 words)
 if configUSE_MUTEXES enabled add 8 bytes (2 words).

* The task stack size is passed as argument when creating at task. The task stack size is defined in words of 32
bits not in bytes.
« osThreadDef(Task A, Task A _Function, osPriorityNormal, 0, stacksize);

* FreeRTOS requires to allocate in the heap for each task :
* number of bytes = TCB_size + (4 x task stack size)

« configMINIMAL_STACK_SIZE defines the minimum stack size that can be used in words. the idle task stack
size takes automatically this value

Lys

life.augmented

Heap (3/6)

« The necessary task stack size can be fine-tuned using the API
uxTaskGetStackHighWaterMark () as follow:
« Use an initial large stack size allowing the task to run without issue (example 4KB)
 The APl uxTaskGetStackHighWaterMark () returns the minimum number of free bytes (ever encountered) in the task
stack. Monitor the return of this function within the task.
« Calculate the new stack size as the initial stack size minus the minimum stack free bytes.
« The method requires that the task has been running enough to enter the worst path (in term of stack consumption).

Idle Task
A
(
Idle task Task A
TCB Stack stack TCB Task B stack

configMINIMAL_STACK_SIZE Task A stack size Task B stack size /

\
K’I configTOTAIY HEAP_SIZE

life.augmented

Heap (4/6)

* FreeRTOS requires to allocate in the heap for each message queue:
 number of bytes = 76 + queue_storage_area.
* queue_storage_area (in bytes) = (element_size * nb_elements) + 16

- When Timers are enabled (configUSE_TIMERS enabled) , the scheduler creates automatically
the timers service task (daemon) when started. The timers service task is used to control and
monitor (internally) all timers that the user will create. The timers task parameters are set through
the fowling defines :

» configTIMER_TASK_PRIORITY : priority of the timers task
« configTIMER_TASK_STACK_DEPTH : timers task stack size (in words)

» The scheduler also creates automatically a message queue used to send commands to the timers
task (timer start, timer stop ...)

Lys

lifs.qugmented

Heap (5/6)

- The number of elements of this queue (number of messages that can be hold) are configurable
through the define:
- configTIMER_QUEUE_LENGTH.

* FreeRTOS requires to allocate in the heap for timers (in bytes):

» Timers Daemon Task (in bytes) :
« TCB_size + (4 x configTIMER_TASK_STACK_DEPTH)

« Timers message queue : number of bytes = 76 + queue_storage_area
» With queue_storage _area = (12 * configTIMER_QUEUE_LENGTH) + 16

« For each timer created by the user (by calling osTimerCreate()) needs 48 bytes

 To save heap size (i.e RAM footprint) it is recommended to disable the define
“‘configUSE_TIMERS” when timers are not used by the application

Lys

life.augmented

Heap (6/6)

- Each semaphore declared by the user application requires 88 bytes to be allocated in the heap.
- Each mutex declared by the user application requires 88 bytes to be allocated in the heap.

- To save heap size (i.e RAM footprint) it is recommended to disable the define
configUSE_MUTEXES when mutexes are not used by the application (task TCB static size being
reduced)

Lys

life.augmented

How to reduce RAM footprint (1/2)

» Optimize stack allocation for each task :

* uxTaskGetStackHighWaterMark (). This API returns the minimum number of free bytes (ever encountered) in the task
stack

* vVApplicationStackOverflowHook (). This APl is a stack overflow callback called when a stack overflow is detected
(available when activating the define configCHECK _FOR_STACK_ OVERFLOW)

Adjust heap dimensioning :
* xPortGetFreeHeapSize ().APIthat returns the total amount of heap space that remains unallocated. Must be used after

created all tasks, message queues, semaphores, mutexes in order to check the heap consumption and eventually re-adjust the
application define ” configTOTAL_HEAP_SIZE".

 The total amount of heap space that remains unallocated is also available with xFreeBytesRemaining variable for heap
management schemes 2 to 5

- If heap_1.c, heap 2.c, heap_4.c or heap_5.c are being used, and nothing in your application is ever calling
malloc() directly (as opposed to pvPortMalloc()), then ensure the linker is not allocated a heap to the C library, it
will never get used.

Lys

life.augmented

How to reduce RAM footprint (2/2)

Recover and minimize the stack used by main and rationalize the number of tasks.

If the application doesn’t use any software timers then disable the define configUSE_TIMERS.

If the application doesn’t use any mutexe then disable the define configUSE_MUTEXES.

configMAX_PRIORITIES defines the number of priorities available to the application tasks. Any number of
tasks can share the same priority. Each available priority consumes RAM within the RTOS kernel so this value
should not be set any higher than actually required by the application. It is recommended to declare tasks with
contiguous priority levels: 1, 2, 3, 4, etc... rather than 10, 20, 30, 40, etc. The scheduler actually allocates
statically the ready task list of size configMAX PRIORITIES * list entry structure : so high value of

configMAX_ PRIORITIES shall be avoided to reduce RAM footprints

=/l *

life.augmented

FreeRTOS
Memory allocation

life.augmented

FreeRTOS

Dynamic memory management

Reset Configuration

Configuration

* FreeRTOS manages own heap for:

* Tasks afeci i] © O
~ Versions
* Queues
CMSIS-RTOS version 1.02
~ Kernel seftings
°
SemaphOreS USE_PREEMPTION Enabled
CPU_CLOCK_HZ SystemCoreClock
hd MUteXGS TICK_RATE_HZ 1000
. . MAX_PRIORITIES T
« Dynamic memory allocation MINIMAL_STACK_SIZE 128 Words
MAX_TASK_MNAME_LEM 16
USE_16_BIT_TICKS Dizabled
: : : IDLE_SHOULD_YIELD Enabled
* |t is possible to select type of memory allocation
USE_RECURSIVE_MUTEXES Disabled
USE_COUNTING_SEMAPHORES Disabled
QUEUE_REGISTRY_SIZE 8
USE_APPLICATION_TASK_TAG Dizsabled
ENABLE _BACKWARD_COMPATIBILITY Enabled
USE_PORT_OPTIMISED_TASK_SELECTION Enabled
. USE_TICKLESS_IDLE Dizabled
TOtaI heap SIZG for USE_TASK_MOTIFICATIONS Enabled
RECORD_STACK_HIGH_ADDRESS Dizsabled
FreeRTOS STACK HIGH et
~ Memaory management settings
Memuory Allocation Dynamic
TOTAL_HEAF_SIZE 3000 Bytes
Memaory Management scheme heap_4
” HOW |S memory a”ocated Hook function related definitions
USE_IDLE_HOOK Enabled

lifs.augmented and dealocated USE_TICK_HOOK Disabled

FreeRTOS in STM32

memory management (except Heap_3.c model)

Data memory

start HEAP (for main
application)
Queue storage area
Queue control block
HEAP (for FreeRTOS) ~84B
QUEUE 1
TASK B
free memory
TASK A
STACK (for main Stack of the Task A
end application and IRQs)

r TCB (Task Control
,’ Block) ~88B

life.augmented

FreeRTOS In STM32

memory management (Heap 3.c model)

Data memory

start
Queue storage area
HEAP (for main
application and Queue control block
FreeRTOS) ~84B
QUEUE 1
TASK B
free memory
TASK A
STACK (for main Stack of the Task A
end application and IRQs)
r TCB (Task Control
,’ Block) ~88B

life.augmented

*Heap _1.c

FreeRTOS

Dynamic memory management

 Uses first fit algorithm to allocate memory. Simplest allocation method (deterministic), but does
not allow freeing of allocated memory => could be interesting when no memory freeing is
necessary

Lys

Heap

Heap

Is not possible to return
memory to heap

J

life.augmented

- Heap 2.c

FreeRTOS

Dynamic memory management

* Not recommended to new projects. Kept due to backward compatibility.
» Implements the best fit algorithm for allocation

« Allows memory free() operation but doesn’t combine adjacent free blocks
=> risk of fragmentation

Lys

life.augmented

Heap

pvPortMalloc

pvPortMalloc

pvPortMalloc

Heap

Heap Heap

[Free blocks are not
combined together

FreeRTOS

Dynamic memory management
*Heap 3.c

» Implements simple wrapper for standard C library malloc() and free(); wrapper makes these
functions thread safe, but makes code increase and not deterministic

* It uses linker heap region.

» configTOTAL_HEAP_SIZE setting has no effect when this model is used.

Heap Heap Heap Heap

Use C functions for allocation]
linker must be modified)

Lys

life.augmented

FreeRTOS

Dynamic memory management

* Heap _4.c (1/2)

» Uses first fit algorithm to allocate memory. It is able to combine adjacent free memory blocks
into a single block
=> this model is used in STM32Cube examples

Heap Heap Heap 1 Heap

[combine together free
memory

N

pvPortMalloc

Allocated
pvPortMalloc
DIO
pvPortMalloc -
’l blo

life.augmented

FreeRTOS

Dynamic memory management

- Heap 4.c (2/2) — place the heap in specific location

 The memory array used by heap_4 is declared within heap_4.c file and its start address is
configured by the linker automatically.

 To use your own declaration configAPPLICATION ALLOCATED HEAP must be setto 1 (within

FreeRTOSConfig.h file) and the array must be declared within user code with selected start
address and size specified by configTOTAL HEAP SIZE.

 Memory array used by heap 4 is specified as:

uint8 t ucHeap[confi1gTOTAL HEAP SIZE];

Lys

life.augmented

FreeRTOS

Dynamic memory management

- Using heap_4.c : heap is organized as a linked list: for better efficiency when
dynamically allocating/Freeing memory.

* As consequence when allocating “N” bytes in the heap memory using
“pvPortMalloc™ API it consumes:
» Sizeof (BlockLink_t) (structure of the heap linked list) : 8 bytes.
« Data to be allocated itself : N bytes.

« Add padding to total allocated size (N + 8) to be 8 bytes aligned :

« Example if trying to allocate 52 Bytes : it consumes from the heap : 52 + 8 = 60 bytes aligned to 8 bytes it gives 64
bytes consumed from the heap.

pvPortMalloc(N);
N

4 N
(8 b ;tes) space 8 bytes
(N bytes) alignment

life.augmented confi gTOTAL_H EAP_S IZE

FreeRTOS

Dynamic memory management

- Heap_5.c (1/2)

Fit algorithm able to combine adjacent free memory blocks into a single block using the same
algorithms like in heap_4, but supporting different memory regions (i.e. SRAM1, SRAM2) being
not in linear memory space

It is the only memory allocation scheme that must be explicitly initialized before any OS object
cab be created (before first call of pvPortMalloc()).

To inialize this scheme vPortDefineHeapRegions() function should be called.

It specifies start address and size od each separate memory area.

* An example for STM32L476 device with SRAM1 and SRAM2 areas is on the next slide

Lys

life.augmented

FreeRTOS

Dynamic memory management

- Heap_5.c (2/2)
« An example for STM32L476 device with SRAM1 and SRAMZ2 areas.:

#define SRAM1 OS START (uint8 t *)0x2000 1000
#define SRAM1 OS SIZE 0x0800 //2kB
#define SRAM2 OS START (uint8 t *)0x1000 0000
#define SRAM2 OS SIZE 0x1000 //4kB

Const HeapRegion t xHeapRegions[] =

SRAM1 {
{SRAM2 OS START, SRAM2 OS SIZE},
{SRAM1 OS START, SRAMI OS SIZE},
0x2000 0000 {NULL,O0} /*terminates the array*/
0x1000 8000
SRAM2

/*before call of any OS create function*/

vPortDefineHeapRegions (HeapRegions) ;
= (=210 641000 0000

Lys

ite.augmented Lower address appears in the array first.

Manual memory allocation

* There is an option to use alternative functions for memory management, however it
Is not recommended (inefficient) way of operation

/* Private variables -----------mmm - */
osThreadId TasklHandle;
osPoolId PoolHandle;

void StartTaskl(void const * argument)

{
/* USER CODE BEGIN 5 */
osPoolDef(Memory,0x100,uint8 t);
PoolHandle =|osPoolCreate(osPool(Memory));
uint8 t* buffersosPoolAlloc(PoolHandle);
/* Infinite loop */ j Allocate memory from pool
for(;;)
{

osDelay(5000) ;

A Create memory pool

¥
KLyys /+ user cooe enp 5 %/

lifs.augmented }

FreeRTOS
Scheduler

life.augmented

Multitasking 1/3

« Cooperative multitasking

Requires cooperation of all tasks

Context gets switched ONLY when RUNNING task

» goes to BLOCKED state (i.e. by call osDelay () function) or
» goes to READY state (i.e. by call osThreadYield () function) or

* is put into SUSPEND mode by the system (other task)

Tasks are not preempted with higher priority tasks

No time slice preemption as well

It requires the following setting in FreeRTOSConfig.h:
» #define configUSE_PREEMPTION 0

Lys

life.augmented

Multitasking 2/3

* Preemptive multitasking (default in FreeRTOS)

» Tasks with the same priority share CPU time
» Context gets switched when:

» Time slice has passed

 Task with higher priority has come

» Task goes to BLOCKED state (i.e. by call osDelay () function)

» Task goes to READY state (i.e. by call osThreadYield () function)
* It requires the following setting in FreeRTOSConfig.h:

 #define configUSE_PREEMPTION 1

Lys

life.augmented

Multitasking 3/3

« Cooperative with preemption by IRQ multitasking

* IRQs are used to trigger context switch

* Preemptive system without time slice

* It requires the following setting in FreeRTOSConfig.h:
 #define configUSE_PREEMPTION 0

Lys

life.augmented

Scheduling 1/2

- The scheduler is an algorithm determining which task to execute.

« Common point between schedulers is that they distinguish between tasks being ready to be executed (in
READY state) and those being suspended for any reason (delay, waiting for mailbox, waiting for
semaphore(s),...)

« The main difference between schedulers is how they distribute CPU time between the tasks in READY state.

Lys

life.augmented

Scheduling 2/2

* In FreeRTOS round-robin scheduling algorithm is implemented:

* Round-robin can be used with either preemptive or cooperative multitasking (configUSE_PREEMPTION in
FreeRTOSConfig.h).

« It works well if response time is not an issue or all tasks have same priority.

* The possession of the CPU changes periodically after a predefined execution time called timeslice*
(configTICK_RATE_HZ in FreeRTOSConfig.h)

*An exception to this rule are critical sections

Lys

life.augmented

FreeRTOS — interrupts and
connection to hardware

life.augmented

FreeRTOS OS interrupts

* PendSV interrupt - SysTick timer
» Used for task switching before tick rate » Lowest NVIC interrupt priority
» Lowest NVIC interrupt priority » Used for task switching on configTICK_RATE_HZ regular
 Not triggered by any peripheral timebase

« Set PendSV if context switch is necessary

» SVC interrupt

* Interrupt risen by SVC instruction

« SVC 0 call used only once, to start the scheduler (within
vPortStartFirstTask() which is used to start the kernel)

4 Priority level
High priority A

Other IRQs vPortStartFirstTask:[
svc I§-------------

PendSV [--==-===-==-=-- e
SysTick [~~========="""" »-

m Low priority Taski | Task2 Task1 Task2

life.augmented \ time /

NVIC configuration

STM32 priority
0

Those interrupts can not execute API functions

Non-RTOS

rRQa [

Kernel(PendSV, SysTick)
255 configKERNEL_INTERRUPT_PRIORITY

* FreeRTOS kernel and its irq procedures (PendSV, SysTick) have lowest possible interrupt priority (255) set in
FreeRTOSConfig.h (configKkERNEL _INTERRUPT_PRIORITY)

191 configMAX_SYSCALL_INTERRUPT_PRIORITY

. Those interrupts can execute API functions
dedicated for interrupts, like QueueGiveFromISR();

« There is a group of interrupts which can cooperate with FreeRTOS API by calling its functions. Maximum level for those
peripherals (based on the position in vector table) is set in configMAX _SYSCALL_INTERRUPT_PRIORITY

« Itis possible to use nested interrupts.

Lys

life.augmented

API functions in IRQ procedures

+ Within FreeRTOS API there are dedicated functions to be executed within
IRQ procedures. All of those functions has FromISR suffix in its names,
like i.e.:

xSemaphoreGiveFromISR(semaphore, *hp task)
VS
xSemaphoreGive (semaphore)

* The only difference for the programmer is additional argument *hp_task. It
is a pointer to the variable which is used to indicate whether operation on
queue or semaphore within IRQ causes unblocking of the task with higher
priority than currently running. If this parameter is pdTRUE, context switch
(PendSV irq) should be requested by kernel before the interrupt exits.

* When using CMSIS API, this process is automatically handled by the
library (by checking IPSR content) and is transparent for the programmer,
le.:

osSemaphoreRelease (semaphore)

Lys

life.augmented

NVIC priority

IRQ1 pdTRUE

L

time

SvC

PendSV

SysTick

Tasks %
A

Example: Task A has been interrupted
by IRQ1. During an interrupt, Task D
with higher priority was unblocked, thus
it will be executed once IRQ will finish

osDelay()

API functions in IRQ procedures

list of the functions which could be run from IRQ procedure

Function name (CMSIS_OS API) Function name (FreeRTOS API)

osKernelSysTick() xTaskGetTickCountFromISR()
osThreadResume() xTaskResumeFromISR()
osThreadGetPriority() uxTaskPriorityGetFromISR()
osSignalSet xTaskGenericNotifyFromISR()
osMessagePut(), XxQueueSendFromISR()
osMailPut()

osMessageGet(), xQueueReceiveFromISR()
osMailGet()

osMessageWaiting() uxQueueMessagesWaitingFromISR()
osMutexWait(), xSemaphoreTakeFromISR()
osSemaphoreWait()

osMutexRelease(), xSemaphoreGiveFromISR()
osSemaphoreRelease()

osTimerStart() xTimerChangePeriodFromISR()

K’l osTimerStop() xTimerStopFromISR()

life.augmented

FreeRTOS — boot sequence & timing

HW dependent:

« Configure the CPU clocks

* Initialize static and global variables that contain only the value zero (bss)
+ Initialize variables that contain a value other than zero

« Perform any other hardware set up required

time

FreeRTOS related *)
« Create application queues, semaphores and mutexes (~500 CPU cycles/object)
- Create application tasks (~1100 CPU cycles/task)

- Start the RTOS scheduler (~1200 CPU cycles)

The RTOS scheduler is started by calling vTaskStartScheduler(). The start up process includes configuring the tick
interrupt, creating the idle task, and then restoring the context of the first task to run

K,’ *) calculations based on ARM CortexM3 device, using ARM RVDS compiler with low optimization level (1)
te.augmented Saurce: FreeRTOS FAQ — Memory Usage, Boot Time & Context Switch Times on www.freertos.org web page

http://www.freertos.org/

|ldle task code

- |[dle task code is generated automatically when the scheduler is started
* |t is portTASK _FUNCTION() function within task.c file
* [t is performing the following operations (in endless loop):

» Check for deleted tasks to clean the memory

taskYIELD() if we are not using preemption (configUSE_PREEMPTION=0)

Get yield if there is another task waiting and we set configIDLE_ SHOULD YIELD=1

Executes vApplicationldleHook() if configUSE_IDLE HOOK=1
Perform low power entrance if configUSE_TICKLESS IDLE!=0) -> let’s look closer on this

Lys

life.augmented

FreeRTOS start

step by step 1/2
* FreeRTOS is started by osKernelStart () function (main.c file) from CMSIS_OS API
* Itis calling vTaskStartScheduler () function (cmsis_os.c file) from FreeRTOS API

* Itis creating an IDLE task (xTaskCreate ()), then disable all interrupts
(portDISABLE INTERRUPTS ()) to be sure that no tick will happened before or during call to
xPortStartScheduler () function (task.c file)

 xPortStartScheduler () function (port.c file) is configuring lowest priority level for SysTick and
PendSV interrupts, then it is starting the timer that generates the tick (in CortexM architecture usually

it is SysTick), enables FPU if present (CortexM4) and starts the first task using
prvPortStartFirstTask () function

Lys

life.augmented

FreeRTOS start

step by step 2/2

- prvPortStartFirstTask () function (port.c file, usually written in assembler) locates the stack

and set MSP (used by the OS) to the start of the stack, then enables all interrupts. After this triggers
software interrupt SVC

* As a result of SVC interrupt vPortSvCHandler () is called (port.c file)

* vPortSVCHandler () function (port.c file) restores the context, loads TCB (Task Control Block)
for the first task (highest priority) form ready list and starts executing this task

Lys

life.augmented

FreeRTOS - lists management
o [oerpin ___Jeondtos

ReadyTasksLists[0] Prioritized ready tasks lists separate for each task priority configMAX_PRIORITIES
(up to configMAX_PRIORITIES
ReadyTasksList[configMAX PRIORITIES] Value stored in FreeRTOSConfig.h)

TasksWaitingTermination List of tasks which have been deleted but their memory INCLUDE_vTaskDelete ==
pools are not freed yet.

SuspendedTaskList List of tasks currently suspended INCLUDE_vTaskSuspend ==
PendingReadyTaskList Lists of tasks that have been read while the scheduler was -

suspended
DelayedTaskList List of delayed tasks -
OverflowDelayedTaskList List of delayed tasks which have overflowed the current tick -

count

There is no dedicated list for task in Running mode (as we have only one task in this
state at the moment), but the currently run task ID is stored in variable pxCurrentTCB

Lys

life.augmented

API - Operations on scheduler

- Start the scheduler
osKernelStart ()

» Set priorities for PendSV and SysTick IRQs (minimum possible)
» Starts kernel of the FreeRTOS (by executing SVC procedure)

« IDLE task is created automatically
(with handler or without it if INCLUDE_xTaskGetldleTaskHandle is not defined)

 There could be another thread creation done.

« Stop the scheduler -> not implemented in STM32 (function vTaskEndScheduler () is empty)

« Check if the RTOS kernel is already started
osKernelRunning ()

* Return values:
0 — RTOS is not started,
1 — RTOS already started,
-1 this feature is disabled in FreeRTOS configuration (INCLUDE_xTaskGetSchedulerState)

+ Get the value of the Kernel SysTick timer
osKernelSysTick ()

» Returns value of the SysTick timer (uint32)

Lys

life.augmented

FreeRTOS
Tasks

life.augmented

What is Task?

* Itis C function:
FirstTask (void const * argument)

* |t should be run within infinite loop, like:
for(;;)
{
/* Task code */

}

- |t can be used to generate any number of tasks (separate instances)
* It has its own part of stack (each instance), and priority
* It can be in one of 4 states (RUNNING, BLOCKED, SUSPENDED, READY)

- ltis created and deleted by calling API functions of the CMSIS _OS (osThreadCreate ()
and osThreadDelete ())

Lys

life.augmented

Task structure

» A task consists of three parts:
* The program code (ROM)

» A stack, residing in a RAM area that can be accessed by the stack pointer (The stack has the same
function as in a single-task system: storage of return addresses of function calls, parameters and local
variables, and temporary storage of intermediate calculation results and register values.

« TCB - task control block (data structure assigned to a task when it is created. It contains status
information of the task, including the stack pointer, task priority, current task status)

» Two calls to pvPortMalloc () are made during task creation. First one allocates

TCB, second one allocates the task stack (it is taken from declared FreeRTOS
heap area).

* The process of saving the context of a task that is being suspended and restoring
the context of a task being resumed is called context switching.

Lys

lifs.qugmented

bame [Dosoton e

*pxTopOfStack
XMPUSettings

xGenericListltem

xEventListltem
uxPriority
*pxStack

Task Name
*pXxEndOfStack

uxCriticalNesting

uxTCBNumber

uxTaskNumber
uxBasePriority
uxMutexesHeld
pxTaskTag
ulRunTimeCounter

_reent xNewLib_reent

Ays

life.augmented

Task Control Block (TCB

Points to the location of the last item placed on the tasks stack.
THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT

The MPU settings are defined as part of the port layer.
THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT

The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended).

Used to reference a task from an event list

The priority of the task. 0 is the lowest priority

Points to the start of the stack

Descriptive name given to the task when created. Facilitates debugging only

Points to the end of the stack on architectures where the stack grows up from low memory

Holds the critical section nesting depth for ports that do not maintain their own count in the port layer

Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been
deleted and then recreated.

Stores a number specifically for use by third party trace code

The priority last assigned to the task - used by the priority inheritance mechanism

Stores the amount of time the task has spent in the Running state

Allocate a Newlib reent structure that is specific to this task.

Note Newlib support has been included by popular demand, but is not used by the FreeRTOS maintainers themselves.

FreeRTOS is not responsible for resulting newlib operation. User must be familiar with newlib and must provide
system-wide implementations of the necessary stubs.

portUSING_MPU_WRAPPERS ==

portSTACK_GROWTH > 0
portCRITICAL_NESTING_IN_TCB ==

configUSE_TRACE_FACILITY ==

configUSE_TRACE_FACILITY ==
configUSE_MUTEXES ==
configUSE_MUTEXES ==
configUSE_APPLICATION_TASK_TAG ==
configGENERATE_RUN_TIME_STATS ==
configUSE_NEWLIB_REENTRANT ==

Task Control Block (TCB

Main fields within TCB (task.c file)

typedef struct tskTaskControlBlock

{
volatile StackType t *pxTopOfStack; //Points to the location of the last item placed on the tasks stack

ListItem t xStatelListItem; //The list that the state list item of a task is reference from denotes
//the state of that task (Ready, Blocked, Suspended)

ListItem t xEventListItem; //Used to reference a task from an event list

UBaseType t uxPriority; //The priority of the task. 0 is the lowest priority

StackType t *pxStack; //Points to the start of the stack
char pcTaskName[configMAX TASK NAME LEN];//Descriptive name given to the task when created.

#if (configUSE MUTEXES == 1)

UBaseType t uxBasePriority; //The priority last assigned to the task - for priority inheritance
UBaseType t uxMutexesHeld;

#endif

#if (configUSE TASK NOTIFICATIONS ==)
volatile uint32 t ulNotifiedValue;
volatile uint8 t ucNotifyState;

#endif

} tskTCB;

life.augmented

Task function example

void FirstTask (void const * argument)

{
/* task initialization */ Run once at first run of

each task instance

for(;;)

{ Run when task instance
/* Task code */ is in RUN mode

}

/* we should never be here */ Should be never

executed.

IS72

life.augmented

Ready

« Task is ready to be executed but is not currently executing
because a different task with equal or higher priority is running

Running

» Task is actually running (only one can be in this state at the
moment)

Blocked
» Task is waiting for either a temporal or an external event

Suspended

» Task not available for scheduling, but still being kept in
memory

Lys

life.augmented

Task states

osThreadCreate

l osThreadYield

Scheduler

osDelay
osDelayUntil

osThreadResume

g v ©

O@
»(Suspended }4—
AN

Task states — CMSIS OS

Tasks states are stored within osThreadState enum (cmsis_os.h file)

State name value comment

osThreadRunning 0 RUNNING

osThreadReady 1 READY

osThreadBlocked 2 BLOCKED

osThreadSuspended 3 SUSPEND

osThreadDeleted 1 Task has been deleted, but its TCB has not yet been freed
osThreadError Ox7FFFFFFE Error code

Lys

life.augmented

Task priorities

» Each task is assigned a priority from [tskIDLE_PRIORITY] (defined in task.h) to
[MAX_PRIORITIES - 1] (defined in FreeRTOSConfig.h)

* The order of execution of tasks depends on this priority

* The scheduler activates the task that has the highest priority of all tasks in the
READY state.

 Task with higher priority can preempt running task if configUSE_PREEMPTION (in
FreeRTOSConfig.h) is set to 1

- Task priorities can be changed during work of the application

lower number = lower priority
Kys

lifs.qugmented

Task priorities

CMSIS_0S

Tasks priorities can be set within osPriority enum (cmsis_os.hfile)

Priority name value comment

osPriorityIdle -3 priority: idle (lowest)

osPriorityLow -2 priority: low

osPriorityBelowNormal -1 priority: below normal

osPriorityNormal 0 priority: normal (default)

osPriorityAboveNormal 1 priority: above normal

osPriorityHigh 2 priority: high

osPriorityRealtime 3 priority: realtime (highest)

osPriorityError 0Ox84 system cannot determine priority or thread has illegal priority

Lys

life.augmented

Context switching

NVIC priority
IRQ bemoommmd] j PREEMPTIVE i Set semaphore whi¢h_unblocks
SVvVC |- j
PendSV | - [Tasks priorities:
i Idle 0
SysTick @--t---------------------------- AB,C 1
D 2
Tasks |[---- A
i i i time
A -> RUN A -> READY B -> READY C->READY A ->READY D -> BLOCKED
B,C = READY B -> RUN C ->RUN A -> RUN D -> RUN A -> RUN
D =BLOCKED C = READY A = READY B = READY B,C = READY B,C = READY
D =BLOCKED D =BLOCKED D = BLOCKED
NVIC priority . COOPERATIVE . . .
IRQ i Y o i
svC : :
Tasks priorities:
PendSV Idle O
AB,C 1
SysTick
Tasks
f i i time
r_ A =RUN ' A -> READY ' B -> BLOCKED B -> BLOCKED '
,’ B,C = READY B -> RUN C -> RUN C ->RUN
C = READY A = READY A = READY

lifs.qugmented

Context switching

list.h
Tasks are grouped within lists at List t objects (list.h file)

Fieldname _______________________lcommemt

1istFIRST LIST INTEGRITY CHECK VALUE known test value — not used

UBaseType t priority: low

ListItem t * Used to walk through the list. Points to the last item returned by a call to
- listGET_OWNER_OF_NEXT_ENTRY ()

MiniListItem t List item that contains the maximum possible item value meaning it is

always at the end of the list and is therefore used as a marker.

1istSECOND LIST INTEGRITY CHECK VALUE known test value — not used

Lys

life.augmented

Context switching

list.h

Tasks are grouped within lists at ListItem t objects (list.h file)

T =

1istFIRST LIST INTEGRITY CHECK VALUE
TickType t

ListItem_t *
ListItem t *
Void *

Void *
11 StSECOND_LI ST_INTEGRI TY_CHECK_VALUE

Lys

life.augmented

known test value — not used

The value being listed. In most cases this is used to sort the list in descending
order.

Pointer to the next Listltem_t in the list.
Pointer to the previous Listltem_tin the list.

Pointer to the object (normally a TCB) that contains the list item. There is
therefore a two way link between the object containing the list item and the list
item itself.

Pointer to the list in which this list item is placed (if any).

known test value — not used

Context switching

list.h

Tasks are grouped within lists at MiniListItem t objects (list.h file)

e

1istFIRST LIST INTEGRITY CHECK VALUE known test value — not used

TickType t The value being listed. In most cases this is used to sort the list in
- descending order.

ListItem t * Pointer to the next Listltem_t in the list.

ListItem t * Pointer to the previous Listltem_tin the list.

Lys

life.augmented

FreeRTOS - context switching

tick source - step by step
 Tick timer (CortexM architecture uses SysTick) interrupt causes execution of
xPortSysTickHandler () (port.cfile)

* xPortSysTickHandler () (usually written in assembly):

* blocks all interrupts (as its own priority is the lowest possible) using
portDISABLE INTERRUPTS () macro (portmacro.h file)

 Activates PendSV bit to run an interrupt what executes xPortPendSVHandler () function
(port.c file):

« Calls vTaskSwitchContext () function (task.c file), which is calling a macro
taskSELECT HIGHEST PRIORITY TASK () (task.c file)to selectthe READY task on the
highest possible priority list.

 Unblocks all interrupts using portENABLE INTERRUPT () macro (portmacro.h file)

Lys

life.augmented

FreeRTOS - context switch time (1/2)

« Context switch time depends on the port, compiler and configuration. A context switch time of 84

CPU cycles was obtained under the following test conditions:
* FreeRTOS ARM Cortex-M3 port for the Keil compiler
» Stack overflow checking turned off
» Trace features turned off

» Compiler set to optimization for speed
« configUSE _PORT_OPTIMISED TASK_SELECTION set to 1 in FreeRTOSConfig.h

Remarks:

* Under these test conditions the context switch time is not dependent on whether a different task was selected to run or the same task was
selected to continue running.

 The ARM Cortex-M port performs all task context switches in the PendSV interrupt. The quoted time does not include interrupt entry time.

» The quoted time includes a short section of C code. It has been determined that 12 CPU cycles could have been saved by providing the entire
implementation in assembly code. It is considered that the benefit of maintaining a short section of generic C code (for reasons of maintenance,
support, robustness, automatic inclusion of features such as tracing, etc.) outweighs the benefit of removing 12 CPU cycles from the context
switch time.

« The Cortex-M CPU registers that are not automatically saved on interrupt entry can be saved with a single assembly instruction, then restored
again with a further single assembly instruction. These two instructions on their own consume 12 CPU cycles.

Lys

life.augmented *) source: FreeRTOS FAQ — Memory Usage, Boot Time & Context Switch Times on www.freertos.org web page

http://www.freertos.org/a00110.html#configUSE_PORT_OPTIMISED_TASK_SELECTION
http://www.freertos.org/

FreeRTOS — context switch time (2/2)

» Context switch time can be much longer in CortexM4 and CortexM7 based devices with Floating
Point Unit due to necessity of stacking FPU registers (additional 17 32bit registers: S0-S15 and
FPSCR).

* Rest of FPU registers (516-S31) should be handled by software

+ Within PendSV handler there is a check done whether floating point unit instruction has been used

and based on this informaiton those registers are stacked/unstacked from/for current task or not:
/* Is the task using the FPU context?
If so, push high vfp registers. */

tst rld4, #0x10
it eq
vstmdbeq r0!, {sl6-s31}

* And then on PendSV exit after the task switch:
/* Is the task using the FPU context?
If so, pop the high vfp registers too. */

tst rld, #0x10
it eq
vldmiaeq r0O!, {sl6-s31}

* More information can be found in Application note 298 from ARM.

Lys

lifs.qugmented

Context switching time

STM32CubeMX modifications

Within STM32CubeMX, pinout tab:
« Configure PB6, PB7 as GPIO_Output
« Configure PD0O as EVENTOUT

ot
Ut

e GPIO_Cu
G GPIO_Ou
S LUSARTZ_RX
S LUSARTZ_Tx

¢ EVENTOUT
SNBSS SYS_ITCK-SWCLK

Re-generate the code and within the code please add some modifications:

1. To set both pins (PB6, PB7), please use GPIOB->0DR |= 0xCO;

2. Toreset PB6, you can used GPIOB->0DR &= OxFFBF;

3. Toreset PB7, you can used GPIOB->0DR &= OxFF7F;

4. To generate 1 sys clk long pulse on PDO use sev (assembly code)

Put above lines in various places in the code to measure time intervals (on the next slide instruction 1)
has been placed within SysTick Handler () instm32L4xx_it.c, instruction 2 and 3 in empty for(;;)

loop within Task1 and Task2 accordingly (main.c file). Instruction 4 has been placed within
xPortPendSVHandler () function (port.c file) just before its jump to user task (line BX LR).

Y/ |n case of issues with GPIOB declaration, please include stm3214xx.h file

lifs.qugmented

gcc

ife.augmented

Time between beginning of SysTick and user task code ~65us

ﬁ WaveForms (new workspace)

|_|=| @&1

Workspace Settings Window Help

} 4AMHz sys clk

m-llillil us -80 us -60 us -40 us -20 us 0us 20 us 40 us 60 us

| Manual Trigger |

Welcome [Help @] scope1 @
File Control View Window (=)
|N Single ||0 Stop |M0de: | Repeated ~ || Auto ~|Source: | Channel 1 ~ | condition: |_f_Rising ~ |Leve|: 14V hd
Trig'd 8192 samples at 33.33 MHz | 2017-12-04 07:43:29.142
7] Time B
Position: 0s A
Base: 20 us/diy v
Il]
< Add Channel '|
V| Channel 1 |1|
Offset: ov -
Range: 1 W/div v
v | Channel 2 |1|
Offset: ov -
Range: 1 v/div -

100 us

Discovery2 SN:210321A29A08 | |

Status: OK | i3]

gcc

Time between beginning of beginning of PendSV code and

user task code ~37us

&ﬂ WaveForms (new workspace)

Workspace Settings Window Help

| Manual Trigger |

Welcome [Help (B> Scope 1 @
File Control View Window f=)
|H Single ”b Run |M0de: |Repeated v||Aut0 ¥ |Source: | Channel 1 ~ | Condition: |_+_Rising v|Leve|: 14V hd
! 8192 samples at 50 MHz | 2017-12-04 07:10:04.724
| Time &) -
Position: 0s -
Base: 10 us/div -
l)
< Add Channel v|
V| Channel 1 |Z|
Offset: ov -
Range: 1 v/div -
| Channel 2 |1|
Offset: ov hd
Range: 1 v/div -

4MHz sys clk

| Discovery2 SN:210321A29A08 | | Status: 0K | |£|

ife.augmented

gcc

Time between beginning of SysTick and jump to user task within PendSV ~30us

&ﬂ WaveForms (new workspace) | =11= ﬁl
Workspace Settings Window Help
Welcome [Help [scope 1 @
File Control View Window =]
|N Single ||b- Run |M0de: |Repeated N ||Aut0 ¥ |Source: |Channel 1 ¥ | Condition: |_{»—Rising ~ |Leve|: 14V hd
8192 samples at 50 MHz | 2017-12-04 07:16:39.780
/| Time (&) -
Position: 0s hd
Base: 10 us/div hd
1)
< Add Channel ~ |
¥ | Channel 1 |1|
Offset: ov -
Range: 1 v/div -
/| Channel 2 IEI
Offset: ov -
Range: 1 v/div -
, I [Manual Trigger | Discovery2 SN:210321A29A08 | [Status: oK | [&3]

ife.augmented

gcc

Time between jump to user task within PendSV and user task code ~5us
ﬁWaveForms (new workspace) | == &1

Workspace Settings Window Help

Welcome [Help (] scope 1 @

File Control View Window |:|

|H Single ”b Run |M0de: |Repeated ~ | Auto ~ |Source: | Channel 1 ~ | condition: |_+_Rising v|Leve|: 14V -
8192 samples at 100 MHz | 2017-12-04 07:41:48.177
/| Time &) -
Position: 0s hd
Base: 2 us/div -
l)
-~ Add Channel v|
/| Channel 1 (&)
Offset: ov -
Range: 1 v/div -
v | Channel 2 |1|
Offset: ov hd
Range: 1 V/div -

| Manual Trigger |

Discovery2 SN:210321429A08 | [Status: OK | [i3]
ife.augmented —

gcc

Length of the pulse generated by sev() ~250ns (1clk cycle @4MHz sys clk)

- -
&;WaveForms (new workspace) | == X
Workspace Settings Window Help
Welcome [Help [P scope 1 @
File Control View Window =
|N Single ||b Run |M0de: |Repeated ™ ||Aut0 ~ |Source: | Channel 1 - | Condition: |_rRising h |Leve|: 1.4V A
8192 samples at 100 MHz | 2017-12-04 07:17:51.478
7] Time (&) -
Position: 0s hd
Base: 500 ns/div -
|]
- Add Channel - |
/| Channel 1 (&)
Offset: RY he
Range: 1 Vfdiv -
v | Channel 2 |:|
Offset: ov -
Range: 1 v/div -
‘ ’r I -0.5 us 0 us -
[Manual Trigger | Discovery2 SN:210321A29A08 | [Status: OK | [3]
ife.augmented |m———————— —

Stack pointers
* Main stack pointer (MSP)

« Used in interrupts
 Allocated by linker during compiling

* Process stack pointer (PSP)

« Each task have own stack pointer
» During context switch the stack pointer is initialized for correct task

PendSV interrupt

Task 1

Task 2

PSP MSP PSP
Stack — Task 1 Stack — Task 1 Stack — Task 2 Stack — Task 2
Data Data Data Data
"’ Non scratch Non scratch

life.augmented registers registers

Dual stack

* There are two independent stack pointers in CortexM devices:
« Main Stack Pointer (MSP) — enabled by default.
* Process Stack Pointer (PSP) — could be enabled (bit 1 in CONTROL register)

- Both 32bit registers are visible as R13 register of the Core and only one can be
used at one time.

» Dual stack architecture is used for OS:

« MSP — OS kernel and exception handlers
» PSP — application tasks

Lys

life.augmented

Tasks AP

 Create Task example

/* Create the thread(s) */
/* definition and creation of Taskl */

Name used Name of Priority of Stack size
for handler | the function | the task in bytes

osThreadDef(Taskl, StartTaskl, osPriorityNormal, @, 128);

const osThreadDef t os_thread_def_Task1] (void *argument) to be
assed to task function]

TasklHandle = osThreadCreate(osThread(Taskl), NULL);

&os_thread_def Task1]

Return value:
« Task1Handle = NULL -> error (i.e. lack of heap memory to allocate the stack)
 Task1Handle != NULL -> task ID for reference by other functions

Lys

life.augmented

Tasks API

Task handle definition:

/* Private variables ------------cmmmrem e - */
osThreadId TasklHandle;

Create task

osThreadIld osThreadCreate (const osThreadDef t *thread def, void *argument)

Delete task

osStatus osThreadTerminate (osThreadId thread _id)

Get task ID

osThreadIld osThreadGetId (void)

Lys

life.augmented

Tasks API

Yield task
osStatus osThreadYield(void)

Check if task is suspended
osStatus osThreadIsSuspended(osThreadId thread id)

Resume task

osStatus osThreadResume (osThreadIld thread id)

Check state of task

osThreadState osThreadGetState(osThreadld thread id)

Suspend task
osStatus osThreadSuspend (osThreadIld thread_id)

Resume all tasks

osStatus osThreadResumeAll (void)

Suspend all tasks

osStatus osThreadSuspendAll (void)

lifs.qugmented

CMSIS-RTOS API

Threads (Tasks) priorities - osPriority

S T

osPriorityIdle -3 idle (lowest)

osPriorityLow -2 low

osPriorityBelowNormal -1 Below normal

osPriorityNormal 0 Normal (default)

osPriorityAboveNormal +1 Above normal

osPriorityHigh +2 high

osPriorityRealtime +3 Realtime (highest)

osPriorityError 0x84 system cannot determine priority or thread has illegal priority

Too high priority (above configMAX_PRIORITIES within FreeRTOSConfig.h)
will be set to max configured value configMAX_ PRIORITIES

Lys

life.augmented

CMSIS OS AP

return values osStatus 1/2

- Most of the functions returns 0sStatus value, below you can find return values on function completed list

(cmsis_os.h file)

0sOK
osEventSignal
oskventMessage
osEventMail
osEventTimeout

os status reserved

Lys

life.augmented

0

8

0x10

0x20

0x40
Ox7FFFFFFF

no error or event occurred
signal event occurred
message event occurred
mail event occurred
timeout occurred

prevent from enum down-size compiler optimization

CMSIS OS AP

- Error status values osStatus (cmsis_os.h) return values osStatus 2/2

osStatus description
value

osErrorParameter parameter error: a mandatory parameter was missing or specified an incorrect
0x80 object.
osErrorResource resource not available: a specified resource was not available
0x81
osErrorTimeoutResource resource not available within given time: a specified resource was not available
0xC1 within the timeout period.
osErrorISR not allowed in ISR context: the function cannot be called from interrupt service
0x82 routines
osErrorISRRecursive function called multiple times from ISR with same object.
0x83
osErrorPriority system cannot determine priority or thread has illegal priority
0x84
osErrorNoMemory system is out of memory: it was impossible to allocate or reserve memory for the
0x85 operation
osErrorValue value of a parameter is out of range.
0x86
"’ osErrorOsS unspecified RTOS error: run-time error but no other error message fits.
OxFF

life.augmented

Tasks lab

STM32CubeMX — adding tasks

Press FreeRTOS button within Pinout&Configuration tab

Configuration

Reset Configuration
a @ Timers and Semaphores @ Mutexes @ FreeRTOS Heap Lsage
@ Config parameters @ Include parameters @ Llser Constants
Tasks
| Task Name | Priority [Stack Size {_|Entry Functi_[Code Gene.. Control Blo...
Task1 osPriorityM... 128 StarTask1l Default MIULL Dynamic MULL MULL
Task2 osPriarityM... 128 StartTask? Default MLULL Dynamic MILILL ML

* We need to create 2 tasks:

© Taski: o N

* Priority: osPriorityNormal
: StackySize: 128 \B/Ides el =X
- Entry Function: StartTask?1 Task Name (Task1)
° Code Generation: Default Priority osPriorityMormal e
° Paramgter: NULL . Stack Size (Words) 3 128
* Allocation: Dynamic Entry Function StartTask1

‘ TaSkg_ " PrioritN | Code Generation Option| |Default v
e rority: osrrioritylNorma Parameter MULL
- Stack Size: 128 Words : :
« Entry Function: StartTask2 g!;ﬁ?tﬁ;me e —
’ gOde G?ner[\altljol_r;_ Default Control Block Name

‘,’ e arameter:

lits.augmented e Allocation: DynamiC ll 4 IJ
|

Tasks lab

o _ STM32CubeMX — adding tasks with the same function
Press FreeRTOS button within Pinout&Configuration tab

Configuration

asks and Cueues @ Timers and Semaphores !
1] pardmeiers @ Include parameters
Taszsks
Task1 asPriarityM... 128 StartTask Default 0 Cynamic MLULL MILILL
Taskz osPriarityM... 128 StartTask Default 1 Cynamic MLULL MILILL
- We need to create 2 tasks: 2
- Task1: - .
* Priority: osPriorityNormal Edit Task u
: (E:roltdr)e/ I;l';':](::’zzoitast;aaill(t Priority 3 osPriontyMormal hd
Parameter: 0) Stack Size (Words) 128
. AIIocation'.Dynamic Entry Function StartTask
- Task2: ' Code Generation Option||Default w
- Priority: osPriorityNormal Parameter 1 _
- Stack Size: 128 Words Allacation \Oynamic ¥
- Entry Function: StartTask Buffer Name

r - Code Generation: Default Control Block Name
Y/ - Parameter: 1 P 4@ IJ

lic.augmented . Allocation: Dynamic

* To configure the project

1. Select Project Manager tab

2. Within Project tab select:
e project name
* Project location
» Type of toolchain

* To Generate Code
3. Select Generate Code button

Lys

life.augmented

Tasks lab

code generation

I———— T T T W W T
o e
b ST “ Fik yincn Help '-!-'3 “ “ ’
| Gubehdy : e Al -
— STMELATEYOT: - JILATECOIS DoW=R { Untiled - ProjectManagsr GEMERATE CODE

— T
[ETMAZECubehf Untitled®: STRAZELATEACTx 34 PHEDISCOVERY
e e s i e

Pinout & C-onfiguration Clock Configuration Project Manager Taols

Projce: Mame

Phisjers Lncation
o Wk,

Apeioan on Elnuciue
Hasi « | O Zonot gonzranz e mand

I mc-an Fakder Localarn
% e, |

Tozomn { IDE 2

EVeSSM VE <

ks Settinge
Minm.m Heap 5=z | CET
P Slek 5 2a r.li“-'.l;.

Sakarnzes Fulling:

Meu gnedl Firinasa's Plackigs
Fdrn Trmrame

b1 WL G | |

Firtraa sfa Fockasa Hame asd Veramr
ST AR ke P 4 W1 950 |

B zs Cefal Firrware Localion

et

Tasks lab

analysis of the code generated by STM32CubeMX
« Any component in FreeRTOS need to have handle, very similar to STM32CubeMX

/* Private variables --------cmmmmmm e e e */
osThreadId TasklHandle;
osThreadId Task2Handle;

+ Task function prototypes, names was taken from STM32CubeMX

/* Private function prototypes ------------““-““-““-- oo */
void SystemClock Config(void);

static void MX _GPIO Init(void);

void StartTaskl(void const * argument);

void StartTask2(void const * argument);

- Before the scheduler is start we must create tasks

Define task]

/* Create the thread(s) */ parameters
[* definition and creation of Taskl */
osThreadDef(Taskl, StartTaskl, osPriorityNormal, 0, 128);{ Create task]
TaskiHandle = oslhreadCreate(osihread(laski), NULL); ’
allocate memory

/* definition and creation of Task2 */
osThreadDef(Task2, StartTask2, osPriorityNormal, ©, 128);

r Task2Handle = osThreadCreate(osThread(Task2), NULL);

life.augmented

printf redirection to USART?Z2

* The following code should be included into main.c file to redirect printf
output stream to UART?2

/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int write(int file, char *ptr, int len)

{
HAL UART Transmit (&huart2, (uint8 t *)ptr,len,10);
return len;

}
/* USER CODE END 0 */

Lys

life.augmented

 Start the scheduler. Its function should never ends *)

/* Start scheduler */
osKernelStart();

* On first task run StartTask1 is called

» Task must have inside infinite loop in case we don’t want to end the task

void StartTaskl(void const * argument)

{

/* USER CODE BEGIN 5 */

/* Infinite loop */

(" for(;;)

{
printf("Task 1\n");

~

7

Endless loop

-

osDelay(l@@@);L_=;;__

\

.

/* USER CODE END 5 */
}

osDelay will start
context switch

 Similar code prepare for Task2 function

« You can monitor both tasks output in debug (printf) viewer from the first lab

Tasks lab

some code modifications

- Modify the code for both tasks in order to display a number of the task call, like: “Task2. Call no 12"

Lys

life.augmented

*) if it ends, it means that we are out of declared heap size and there was not enough memory space to create a new task

Tasks lab

* If both Delays are processed the FreeRTOS is in idle state
/ Priority level \

_ o osDelay osDelay Delay ends osDelay osDelay
High priority PendSV PendSV PendSV PendSV PendSV

Low priority EKH Idle hﬂ“

K time

Running TasK1

Running Running Running Running Running

Ready

Task1 Task1

Blocked Blocked Blocked

Lys

life.augmented

Tasks lab

* Without Delays the threads will be in Running state or in Ready state

* Use HAL Delay ()

e Priority level I
. . SysTick SysTick SysTick SysTick SysTick
High priority T PendSV PendSV PendSV PendSV PendSV
Low priority Task1 Task1 Task1
>
K time /

Task1

Running

Runnin
Task1 - 9

Task 1
as Ready - Ready

Blocked Blocked Blocked

*unning Running ' rRunning Running

1

Blocked Blocked Blocked

Lys

life.augmented

Tasks lab

task priorities

* Increase the priority of Task1

* Double click on task for change

» Button OK

- Regenerate the code and compile it

* |s there any difference in the printf window during debug?

« What could be done to see the difference (Task1 more frequent occurrence)

& Tasks and Queues @® Timers and Semaphores @ Mutexes @ FreeRTOS Heap Usage
@ Config parameters @ Include parameters @ User Constants
-Tasks
Task1 osPriorityRealti... 128 StarnTaskl Default MULL Dynamic MULL MULL
TaskZ osPriorityMormal 128 StanTaskz Default MULL Dynamic MULL MULL

Lys

life.augmented

Tasks lab

task priorities

 After we 5x times send text put task to block state

» Because task have high priority it allow to run lower priority task

/* USER CODE END 4 */
void StartTaskl(void const * argument)
{

/* USER CODE BEGIN 5 */

uint32 t i = 0;

/* Infinite loop */

for(;;)

{

for (1 = 0; 1 < 5; i++){

IM(MIW); ! Helps not spam]
HAL Delay(50);
}

terminal

osDelay(1000);

} Block task]

/* USER CODE END 5 */

Lys

life.augmented

Tasks lab

task priorities

* |f higher priority task is not running we can print text from this task

/* StartTask2 function */
void StartTask2(void const * argument)

{
/* USER CODE BEGIN StartTask2 */

/* Infinite loop */

for(;;)

{
printf("Task 2\n"); Helps nqt Spam]
HAL Delay(50); terminal

}

/* USER CODE END StartTask2 */

Lys

life.augmented

Tasks lab

* What happen if Task1 not call osDelay () ?

/ Priority level \
. " osDelay Delay end osDelay Delay end osDelay
High priority PendSV PendSV PendSV PendSV PendSV
Task1 Task1 Task1
Low priority
>
K time /

Task1

Running

*unning Running

e | e

I e e

' ~unnnin~ Running — Running

Ready l Ready - Ready

I o Blocked

Blocked

Lys

life.augmented

- Task1 will be executed continuously

Lys

life.augmented

Tasks lab

/ Priority level \
High priority T
Low priority
>
K time /

Running

Blocked

Task1

_unning . .\unnlng ' Running Runnlng . Running

Ready Ready Read Ready Ready

Blocked Blocked Blocked Blocked Blocked

Include vTaskDelayUntil

Include vTaskDelay OS D e I ay AP I

* Delay function

osStatus osDelay (uint32_t millisec)

» Delay function which measure time from which is delay measured

osStatus osDelayUntil (uint32_t PreviousWakeTime, uint32 t millisec)

Lys

lifs.qugmented

Induce TaskDolay. osDelay AP

step by step

*osDelay () calls vTaskDelay () (tasks.c file)

vTaskDelay () Iis performing the following list of operations:

» Calls vTaskSuspendAll () to pause the scheduler without disabling interrupts. RTOS tick will
be held pending until the scheduler has been resumed.

* Remove task from event list (running tasks) and move it to delayed list with given delay value
using the function prvAddCurrentTaskToDelayedList ()

* Resume the scheduler using xTaskResumeAll () function

* Trigger PendSV interrupt (using portYIELD WITHIN API () macro) to switch the context

Lys

life.augmented

Include vTaskDelay

osDelay(), osDelayUntil functions

- osDelay () start measure time from osDelay call

=

=

-

O ,

o 1

@] i PendSV PendSV PendSV

Task 2 ... osDelay : Task 1 ... osDelay IDLE] Task 2
! i Task 2
| Y | Delay end
Delay time

Include vTaskDelayUntil

*osDelayUntil () starts measure time from point which we selected

1 PendSV PendSV PendSV
Task 2 ...osDelayUntil Task 1 ... osDelay IDLE ! Task 2
r Reference start ! i Task 2
” \ | Delay end
life.augmented Y

Delay time

Include vTaskDelayUntil |

osDelay() and osDelayUntil

- Enable vTaskDelayUntil in Include parameters

‘ Include vTaskDelay

- Regenerate project, modify tasks to:

void StartTaskl(void const * argument)

IConfigure the fallowing parameters:

{ Q| : | © &) o
/* USER CODE BEGIN 5 */ e ~ Include definitions
uint32 t 1 = 6; Delay vTaskPrioritySet Enabled
/* Infinite loop */ o
for(s;) between two uxTaskPriorityGet Enabled
{ run is 2s vTaskDelete Enabled
printf("Task 1\n"); vTaskCleanUpResources Disabled
HAL_Delay(1000);
— vTask3Suspend Enabled
osDelay(2000); b _
T vTaskDelayUntil Enabled
/* USER CODE END 5 */ vTaskDelay Enabled
} . XTaskGetschedulerState Enabled
/* StartTask2 function */ ¥TaskResumeFromlSR Enabled
void StartTask2(void const * argument) ¥lueueGetMutex-older Disabled
{ ¥3emaphoreGetMutexHolder Disabled
k k
/ USEB FODE BEGIN StartTask2 */ pcTaskGetTaskMame Enabled
/* Infinite loop */]
for(;;) uxTaskGetstackHighWaterMark Enabled
i
{ ¥TaskGetCurrentTaskHandle Enabled
printf("Task 2\n"); eTaskGetState Enabled

HAL_Delay(200);

r } ¥EventGroupSetBitFromIsR Disabled
,’ /* USER CODE END StartTask2 */ «TimerPendFunctionCa Disabled

life.augmenied } ¥TaskAbortDelay Enabled

Include vTaskDelayUntil

osDelay() and osDelayUntil()

- Enable vTaskDelayUntil in Include parameters

- Regenerate project, modify tasks to:

void StartTaskl(void const * argument)

/* USER CODE BEGIN 5 */ need mark wakeup time
uint32_t wakeuptime;

wakeuptime=osKernelSysTick();
/¥ Intfinite loop */

{
For osDelayUntil function we]

for(5;)
{
printf("Task 1\n");
HAL Delay(1000); - -
osDelayUntil (wakeuptime,2000); | Function will be
} ‘ executed every 2s
/* USER CODE EIV -/

} Time from which the Real delay time]
delay is measured

Lys

life.augmented

Include uxTaskPriortyGet| Thread priority get AP

step by step

*osThreadGetPriority () calls uxTaskPriorityGet () or
uxTaskPriorityGetFromISR () (tasks.c file)

cuxTaskPriorityGet () Iis performing the following list of operations:

 Entering into critical section (to avoid any parallel operations on OS) using
taskENTER CRITICAL () in case of executing from thread mode or
portSET INTERRUPT MASK FROM ISR () in case of interrupt mode

» Read priority value from TCB of the given task using function prvGetTCBFromHandle (TCB t
xTask)

« extract Priority value from the TCB structure (uxPriority field)

« Exit from critical section using taskEXIT CRITICAL () in case of executing from thread mode or
portCLEAR INTERRUPT MASK FROM ISR() in case of interrupt mode

Lys

life.augmented

nclude VTzskPrioriySet Thread priority set API

step by step

*osThreadSetPriority () calls vTaskPrioritySet () (tasks.c file)

vTaskPrioritySet () Iis performing the following list of operations:

 Entering into critical section (to avoid any parallel operations on OS) using
taskENTER CRITICAL ()

 Set given priority value to TCB of the given task

» Checks whether task should not be moved to different task list due to new priority

» Exit from critical section using taskEXIT CRITICAL ()

Lys

life.augmented

Include vTaskPrioritySet

Priority change lab

* How priorities are changed?

SysTick SysTick
PendSV PendSV Bendsy

Task1 Task1 Task?2 Task1
osThreadSetPriority osThreadSetPriority osThreadSetPriority
Task 2 Pri +1 Task 2 Pri +1 Task 2 Pri -2
o time
prigrity

6 Task 1, Task2

5

4
O IDLE IDLE

Lys

life.augmented

Include vTaskPrioritySet . .
: Priority change lab

Include uxTaskPriorityGet

@ FreeRTOS H

@ Mutexes
@ Timers :

'. T-J |- and Clueues

- Task1 has higher priority than Task2

Configure the fu:ullu:mnng parameters.

* |If not yet done, enable vTaskPriorityGet

and uxTaskPrioritySet . _
in IncludeParameters)))
~ Include definitions
vTaskPriorityset Enabled
[uxTaskPriorityGet Enabled]

@ Timers and Semaphoares @ hutexes @ FreeRTOS Heap Usage
@ User Constants

@ Tasks and Queues
@ Config parameters @ Include parameters

-Tasks
Entry Function |Code Generatio... Control Block N...
MLILL

MULL Dynamic MULL

Sta MTask1 Crefault
MULL Dynamic MULL

StanTasks Default

MULL

Task1 osFriontyRealt..
Taskz nsF‘rmntyNnrmal EB

Lys

life.augmented

Include vTaskPrioritySet

include uxTaskPriorityGet Priority change lab

» Modify Task1 to:

void StartTaskl(void const * argument)

{
/* USER CODE BEGIN 5 */

osPriority priority;

/* Infinite loop */ —
For () %d'l’askZ priority |

priority=osThreadGetPriority(Task2Handle);
—printf(Task I\n J; .

osThreadSetPriority(TaskZHandle,pr‘ior‘ity+1)}4 Increase Task2 priority]
HAL Delay(1000);

}
/* USER CODE END 5 */

Lys

life.augmented

Include vTaskPrioritySet

Include uxTaskPriorityGet

» Modify Task?2 to:

/* StartTask2 function */
void StartTask2(void const * argument)
{

/* USER CODE BEGIN StartTask2 */

osPriority priority;

/* Infinite loop */

Priority change lab

printf("Task 2\n");

1Eor*(3 ;) Wty of current task]
priority=osThreadGetPriority(NULL)}

osThreadSetPriority(NULL,priority-2);

}
/* USER CODE END StartTask2 */

}
Lyy

life.augmented

Decrease task priority]

‘ Include vTaskDelete ‘

Creating and deleting tasks lab

- Example how to create and delete tasks

> ,
= 1
-: :
8 PendSV PendSV PendSV i
Q !
Task 2 E
a
Task 1 Task 1 Task 1
Create of Task2 Delete of Task2 1'Task 1
IDLE iDelay
end
time

Lys

life.augmented

Creating and deleting tasks lab

- Example how to create tasks

« Comment Task2 creation part in main.c

/* definition and creation of Task2 */
// osThreadDef(Task2, StartTask2, osPriorityNormal, @, 128);
// Task2Handle = osThreadCreate(osThread(Task2), NULL);

» Modify Task1 to create task2

void StartTaskl(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
printf("Create task2");
osThreadDef(Task2, StartTask2, osPriorityNormal, @, 128);
Task2Handle = osThreadCreate(osThread(Task2), NULL);l\\\\

osDelay(1000);

} I .
r /* USER CODE END 5 */ Task 2 creation]
> /4 }

lifs.augmented Ta S kS_I a b

‘ Include vTaskDelete ‘

Creating and deleting tasks lab

* Example how to delete tasks

* Modify Task2 to delete himself:

/* StartTask2 function */
void StartTask2(void const * argument)

{
/* USER CODE BEGIN StartTask2 */

/* Infinite loop */
for(;;)
{
printf("Delete Task2\n");

osThreadTerminate(Task2Handle); Delete Task]

}
/* USER CODE END StartTask2 */

Lys

life.augmented

{nelude vTaskDetete| osThreadTerminate API

step by step
* osThreadTerminate () calls vTaskDelete () (cmsis_os.c file)

» The only argument specifies the ID of the task to be deleted. NULL means that the
calling task will be deleted.

*vTaskDelete () function (task.c file):

 Within critical section (started by taskENTER CRITICAL () macro which is running
vPortEnterCritical () defined in port.c file) removes the task from the ready list using
function uxListRemove () and removes the task from waiting on an event tasks list.

* In case the task is deleting itself function is switching execution to the next task calling function

portYIELD WITHIN API () which could beinfact portYIELD () function (default setting,
FreeRTOS.h file)

Memory allocated by the task code is not automatically freed and should be freed
before the task is deleted, TCB and its original stack are freed by IDLE Task.

Lys

lifs.qugmented

If the task has finished its job earlier...

* osThreadYield () — move the task from Run to Ready state. Next task with the
same priority will be executed.

/ SysTick SysTick SysTick SysTick SysTick\
Priority level PendSV PendSV PendSV PendSV PendSV
. . osTaskYield osTaskYield
High priority T PendSV PendSy
Low priority Task3
K 0s quant os quant 0s quant os quant > time

Runing Runing — Runing

s | N

I e e I o Blocked

Runing ' Runing

Ready Ready

Task3

Blocked

Lys

life.augmented

osThreadYield() function

- osThreadYield () function is used to end task activity once the job is done to not
wait for the tick.

* [t moves task from RUN mode to READY

* [t makes sense if we have few tasks on the same priority otherwise yielded task will
be executed again

>
5| Tesk2] Task 1 Task2 has the same priority as Task1
8
. PendSV SysTick | PendSV
Task 1 Task2 | Task 1
Task1 activity osThreadYield
v/ TicI time

life.augmented > ti m e

oslhreadYield API

step by step

*osThreadYield () calls taskYIELD () (cmsis_os.c file) which is defined as
portYIELD () (task.h file)

*portYIELD () function (portmacro.h file) triggers PendSV interrupt to request a
context switch to the next task from ready list

An example (version for IAR C compiler):

#define portYIELD ()

{

/* Set a PendSV to request a context switch. */
portNVIC INT CTRL REG = portNVIC PENDSVSET BIT;
__DSB();

_IsSB(O);

}

Lys

life.augmented

Threads/Tasks APls

osKernellnitialize() - empty -

osKernelStart() vTaskStartScheduler()
osKernelRunning() xTaskGetSchedulerState()
osKernelSysTick() xTaskGetTickCount()
xTaskGetTickCountFromISR()
osThreadCreate() xTaskCreate()
osThreadGetld() xTaskGetCurrentTaskHandle()
osThreadTerminate() vTaskDelete()
osThreadYield() taskYIELD()
osThreadSetPriority() vTaskPrioritySet()
os ThreadGetPriority() uxTaskPriorityGet()
uxTaskPriorityGetFromISR()
osDelay() vTaskDelay()

Lys

life.augmented

Threads/Tasks APls

osWait() — empty function -

osThreadGetState() eTaskGetState()
osThreadlsSuspended() eTaskGetState()
osThreadSuspend() vTaskSuspend()
os ThreadSuspendAli() vTaskSuspendAll()
osThreadResume() vTaskResume()
xTaskResumeFromISR()
osThreadResumeAll() xTaskResumeAll()
osDelayUntil() vTaskDelayUntil()
osAbortDelay() xTaskAbortDelay()
osThreadList() vTaskList()

Lys

life.augmented

Intertask
communication

w/

life.q

CMSIS OS inter-task communication

* Queues. Allows to pass more information between the tasks. Suspend task if tries to “put” to full
queue or “get” from empty one.

- Semaphores are used to communication between the tasks without specifying the ID of the thread
who can accept it. It allows counting multiple events and can be accepted by many threads.

* Direct to task notifications are used to precise communication between the tasks. It is necessary
to specify within signal thread id.

- Mutexes are used to guard the shared resources. It must be taken and released always in that
order by each task that uses the shared resource.

- Event Groups are used to synchronize task with multiple events (OR-ed together). There could be
8 or 24 bit value used here (depends on configUSE_16_BIT TICKS settings) — not implemented in
CMSIS_OS API

=/l *

life.augmented

FreeRTOS
Queues

Lys

life.augmented

Queues (1/2)

* Queues are pipes to transfer data between tasks in RTOS

- By default queue is behaving as FIFO (First In - First Out); can be redefined to
perform as LIFO (Last In - First Out) structure by using xQueueSendToFront()
function (not available in current CMSIS-RTOS API).

- All data send by queue must be of the same type, declared during queue
creation phase. It can be simple variable or structure.

« Within CMSIS-RTOS API there are two types of queues:

« Message where one can send only integer type data or a pointer

« Mail where one can send memory blocks

Lys

lifs.qugmented

Queues (2/2)

- Length of queue is declared during creation phase and is defined as a number of
items which will be send via queue.

- Qperations within queues are performed in critical sections (blocking interrupts
by programming BASEPRI register for the time of operation on queue.

- Tasks can block on queue sending or receiving data with a timeout or infinitely.

 If multiple tasks are blocked waiting for receiving/Sending data from/To a queue
then only the task with the highest priority will be unblocked when a data/space
IS available. If both tasks have equal priority the task that has been waiting the
longest will be unblocked.

Lys

life.augmented

Lys

life.augmented

Queue structure management

queue.c

ams e,

*pcHead

*pcTail

*pcWriteTo

*pcReadFrom

uxRecursiveCallCount

xTasksWaitingToSend
xTasksWaitingToReceive
uxMessagesWaiting

uxLength

uxltemSize

XxRxLock

xTxLock

uxQueueNumber
ucQueueType

*pxQueueSetContainer

Points to the beginning of the queue storage area
Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the

queue items, this is used as a marker

Points to the free next place in the storage area

Points to the last place that a queued item was read from when the structure is used as a queue

Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is
used as a mutex

List of tasks that are blocked waiting to post onto this queue. Stored in priority order

List of tasks that are blocked waiting to read from this queue. Stored in priority order

The number of items currently in the queue

The length of the queue defined as the number of items it will hold, not the number of bytes.

The size of each items that the queue will hold.

Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set
to queueUNLOCKED when the queue is not locked

Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to
queueUNLOCKED when the queue is not locked.

Use of a union is an exception to the coding standard to
ensure two mutually exclusive structure members don't
appear simultaneously (wasting RAM)

Use of a union is an exception to the coding standard to
ensure two mutually exclusive structure members don't
appear simultaneously (wasting RAM)

configUSE_TRACE_FACILITY ==
configUSE_TRACE_FACILITY ==
configUSE_QUEUE_SETS ==

Queue

Sender Task Receiver Task
Message 1
osMessagePut
Sender Task Receiver Task
Message 2 Message 1
osMessagePut
Sender Task Receiver Task
Message 2 | Message 1
osMessageGet

Sender Task Receiver Task
Message 2
osMessageGet
-

Lys

life.augmented

* Create Queue:

7\ —_~\

Queue Handle Create Queue

Put data into Queue

Queue

osMAessageQIdIosMessaggCreate (const osMessageQDef t *queue def, osThreadId thread _id)

osStatus osMessagePut (%jﬂ%ﬂﬂﬂ id: uintBZ!& imcoj uint32!t millisec)

Queue handle

ltem to send

Receive data from Queue

Sending timeout

osEvent]osMessageGet kosMessagqud queue_id]

uint32 t millisec)

/7 \

Structure with status Queue handle
and with received item

Delete the queue

77X

Receiving timeout

osStatus osMessageDelete kosMessageQId queue_id)

71 N

life.augmented Queue handle

Queue

- Read an item from a Queue without removing the item from it:

osEvent!osMessagePeek (osMessageQId queue_iﬁ uint32_t fiiiijié?

Structure with status and] Queue handle Receiving timeout

with received item

« Get the number of messages stored in a queue

uint32 1 osMessageWaitingPeek (osMessageQId queue_iﬂ)
Number of the messages Queue handle
stored in a queue

» Get the available space in a message queue

<~

uint32_t osMessageAvailableSpacedosMessageQId queue_id

"\

Queue handle

Available space in a
K,’ k message queue

life.augmented

* oskEvent structure

typedef struct {

osStatus status; ///<
union {

uint32 t V; ///<

void *D; ///<

int32 t signals; ///<

} value; ///<
union {

osMailQId mail id; ///<

osMessageQId message id; ///<

} def; ///<
} osEvent;

status code: event or error information

message as 32-bit value

message or mail as void pointer
signal flags

event value

mail id obtained by \ref osMailCreate
message id obtained by \ref osMessageCreate
event definition

- If we want to get data from osEvent we must use:
* osEventName.value. v ifthe value is 32bit message(or 8/16bit)

* oskEventName.value.p and retype on selected datatype

Lys

life.augmented

Queue

Queue lab

* Tasks part:
1. Rename tasks to Sender1 and Receiver and its functions.

2. If deleted, old tasks will be removed (with USER CODE !!l) from the code.
To keep the user code, just rename the task.

3. Set both tasks to normal priority NI

* Queue part

& Tasks and IZiZ! Leles

4. Button Add Sender! osPriorityNormal 128 StartSenderi \Default NULL Dynamic NULL NULL
) Receiver osPriarityMormal 128 StatReceiver pPefault MULL Dynamic MLULL MULL
5. Set queue size to 256
6. Queue type to uint8_t 1-3
7 Button OK Add Deleta
i 3 -Quewes
Az kL2 — Control Block Na...
Queue Name Queue Clueus uintg_t Dynamic MULL MULL
Queue Size 5 256
ltem Size uintd| t)
Allocation Oynamic -
Buffer Name
Buffer size n'a 4 Add
r Cantrol Block Mame |
’ ’ (]l Cancel
life.augmented -

printf redirection to USART?Z2

» The following code should be included into main.c file to redirect printf
output stream to UART2

/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int write(int file, char *ptr, int len)

{
HAL UART Transmit (&huart2, (uint8 t *)ptr,len,10);
return len;

}
/* USER CODE END 0 */

Lys

life.augmented

Queue lab

code processing

* Queue handle is now defined

/* Private variables ---------mm o - - */
osThreadId SenderlHandle;

osThreadId ReceiverHandle;

osMessageQId QueuelHandle;

* Queue item type initialization, length definition and create of queue and memory
allocation

/* Create the queue(s) */ Queue item definition

/* definition and creation of Queuel *
osMessageQDef (Queuel, [256}, |uint8_t));
QueuelHandle = osMess7rQE:fate(osMessageQ(Queuel), NULL);

Queue size

Lys

life.augmented

Queue lab

code processing
- Sender1 task

void StartSenderl(void const * argument)

{
/* USER CODE BEGIN 5 */

/* Infinite loque—i —

for(;;) Put value ‘1’ into queue

{

rintf("Task : Item tO Send

osMessagePut(QueuelHandle|| Ox1}{ 2 .
printt (" Taskl delay\n")) TImeOUt fOr Send
osDelay(1000);

) Queue handle

/* USER CODE END 5 */

Lys

life.augmented

Queue lab

code processing
* Receiver task

/* StartReceiver function */
void StartReceiver(void const * argument)
{
/* USER CODE BEGIN StartReceiver */
osEvent retvalue;
/* Infinite loop */

‘E‘”‘(“) Get item from queue

How long we wait on
data in queue
It will block task

printf("Task2\n");
retvalue%bsMessageGetQQueuelHan 1
printf(“%d \n",retvalue.value.| Queue han

}
/* USER CODE END StartReceiver */

Lys

life.augmented

Queue Blocking

Sender Task Receiver Task

osMessageGet

Receiver Task
Blocked

Sender Task

Message 1
osMessagePut

Sender Task Receiver Task
osMessageGet

osMessageGet

Lys

life.augmented

Queue Blocking

» After calling osMessagePut ()

* If there is no free space in queue the Sender task is blocked for settable time then it will
continue (without sending the data)

« If there is free space in queue the Sender task will continue just after data send

* After calling osMessageGet ()

« If any data are not in queue the Receiver task is blocked for settable time then it will continue
(without data reception)

« If the data are in queue the task will continue just after data reception

=>

e
= :
5| R
S
o PendSV PendSV
BepdSy SysTick SysTick
Receiver Sender1 Receiver Sender1

osMessageGet

osMessagePut osMessagePut

Lys

life.augmented

Blocked
[T 1]

Two senders lab

* Let’s create two sending tasks: Sender1, Sender2 and one Receiver task with the
same priorities.

@ Timers and Semanp

@ hutexes

@ Config parameters

-Tasks

Task Name Priority .| Entry Function | Code ... | Parameter | Allocation | Buffer Ma... | Control BI...

sender osPriorityMormal 128 StartSender1 Default MNULL Dynamic MULL MULL

Receiver osPriorityMormal 128 StartReceiver Default MNULL Dynamic MULL MULL

Sender2 osPriorityMormal 128 StartSenderZ2 Default MULL Dynamic MULL MULL
Add D

-Queues

Clueue

uintg_t

Dynamic

Buffer Name _|Control Block Na...

MULL

Lys

life.augmented

Delete

Multiple senders, one receiver

« Because tasks have same priority, receiver will get data from queue after both task put data into queue

« What would happened if will be more tasks?

>
=
[- .
]l Receiver | Sender1 | Sender2
e
Q > > o8 > 58 > o8 > = >
% B O H O H S e H O %
go) T - T O T - o) [— go)
5 52 52 52 52 54 5
o a n aom o wn a v)] o
GL) g : qz CE) GL) 8 t a CE 2 t A CE E
E=d 3 Q| 2 O = B | ° | | ol 2
QF O [Ol o ge] S ge] © ge] S ge] §
O % C B c O) G cC - C
O = Q| = (4] Q=) O (D] Q| =
4 3 N\ = n| - X 0| - n| - n| & 0| e
Blocked Blocked
life.augmented Queue empty Queue fUII

Two senders lab

» Two sending tasks

* They are same no change necessary

void StartSenderl(void const * argument) void StartSender2(void const * argument)

{ {

Lys

life.augmented

/* USER CODE BEGIN 5 */

/* Infinite loop */

for(;;)

{
printf("Taskl\n");
osMessagePut(QueuelHandle,0x1,200);
printf("Taskl delay\n");
osDelay(2000);

}
/* USER CODE END 5 */

/* USER CODE BEGIN StartSender2 */

/* Infinite loop */

for(;;)

{
printf("Task2\n");
osMessagePut(QueuelHandle,0x2,200);
printf("Task2 delay\n");
osDelay(2000);

}
/* USER CODE END StartSender2 */

» Simple receiver

/* StartReceiver function */
void StartReceiver(void const * argument)
{

/* USER CODE BEGIN StartReceiver */

osEvent retvalue;

/* Infinite loop */

for(s;)

{
retvalue=osMessageGet(QueuelHandle,4000);
printf("Receiver\n");
printf("%d \n",retvalue.value.p);

}
/* USER CODE END StartReceiver */

Lys

life.augmented

Two senders lab

Receiver with higher priority lab

- Senders have same priority
* Receiver have higher priority than senders
* Please verify whether behavior is inline with expectations

Lys

life.augmented

@ Timers and Semaphores & hiute:
@ Config parameters @ Include parameters
-Tasks
Entry Function [Code G..] Parameter | Allocation | Buffer Name |Control Bloc...
Sender asPriarityMormal 128 StartSender Default MULL Cynamic MULL MLULL
ReCceiver osHrionyAboveNormal 175 stankeceiver Default ULL Dynamic MULL MULL
Senderz asPriorityWormal 128 StartSender? Default M Edit Task E
Task Name Receiver
Priarity osPriorityAboveMormal ~1
Stack Size (Words) 128
_Queues Entry Functiuﬂ | StantReceiver B
mm Code Beneration Option {Detaul I
Cueue uint3_t Dynamig Parameter HULL
I Allocation Cynamic w
| Buffer Name
Contral Block Name
| ox || cmee_ !

I D

Receiver with higher priority lab

» Receiver is now unblocked every time when sender tasks put data into queue

riorit

= > x > 58 2 X > > a8 >
(@) wn C 0 o 59 c?).Q wn C mn o (@)
o T = T = el == O - pell O = o
5 5 2 5 2 5 2 5 2 5 2 5 2 5
o oy oy o w a w (aI?) a oy o

osMessageGet

osMessagePut
Receiver
Sender2
osMessagePut
Receiver
Sender1
Receiver

osMessagePut

Blocked Blocked Blocked Blocked

"l Queue empty Queue empty Queue empty Queue empty

life.augmented

Single sender, two receivers

- Message from the queue is taken by the task with higher priority

* In case of equal priorities currently executed or first executed task will
get the message. It is not deterministic.

life.augmented

Queue items lab

* Queues allow to define type (different variables or structures) which the queue use.
« Within Queue1 ltem size put a structure called Data
- Regenerate project

Queues

Buffer Name Control Block Name
Clueue 16 Data Dynamic MULL MUILL

Lys

life.augmented

Queue items lab

 Create new structure type for data

/* Define the structure type that will be passed on the queue. */
typedef struct

{
uintl6_t Value;

uint8 t Source;
} Data;

* Define Structures which will be sent from sender task

/* Declare two variables of type Data that will be passed on the queue. */
Data DataToSend1={0x2018,1};
Data DataToSend2={0x2019,2};

Lys

life.augmented

Queue items lab

« Sent data from Sender1 task

void StartSenderl(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{

Put data into queue

rintf("Taskl\n"); .
losMessagePut(QueuelHandle,(uint32_t)&DataToSend1,20@);
printf("Taskl delay\n");
osDelay(2000);

}
/* USER CODE END 5 */

}

* Prepare similar code for Sender2

Lys

life.augmented

» oskvent structure

typedef struct {

osStatus status; ///<
union {

uint32 t V; ///<

void *p; ///<

int32 t signals; ///<
} value; ///<
union {

osMailQId mail id; ///<

osMessageQId message id; ///<
} def; ///<
} osEvent;

Queue

status code: event or error information

message as 32-bit value

message or mail as void pointer
signal flags

event value

mail id obtained by \ref osMailCreate
message id obtained by \ref osMessageCreate
event definition

- If we want to get data from osEvent we must use:

* osEventName.value.v ifthe value is 32bit message(or 8/16bit)

* oskEventName.value.p and retype on selected datatype

Lys

life.augmented

Queue items lab

» Receiver data from sender task

/* StartReceiver function */

void StartReceiver(void const * argument)

{
/* USER CODE BEGIN StartReceiver */
osEvent retvalue;
/* Infinite loop */
for(ss) Get data from queue

{

retvalue=osMessageGet(QueuelHandle, 4000) ;

if(((Data*)fretvalue.value.p)->Source==1){
printf("Receiver Receive me, B

else{ Decode data from osEvent structure

printf("Receiver Receive message from Sender 2\n");

}
printf("Data: %d \n",((Data*)retvalue.value.p)->Value);

}
/* USER CODE END StartReceiver */

Lys

life.augmented

Mail Queue

* In mail queue we are transferring memory blocks which needs to be allocated
(before put the data there) and freed (after taking data out)

- Mail queue passes pointers to allocated memory blocks within the message
gueue, so there is no big data transfers. It is an advantage to message queues.

lifs.qugmented

* Create Mail Queue:

— "\

Mail Queue Handle

Create Mail Queue

* Put a mail to a Queue

osStatuslosMailPut kosMailQId queue_id| void * mail)

Status of the operation

Mail Queue handle

» Receive mail from a Queue

osEvent| osMessageGet

N\

Structure with status and] Mail Queue handle

with received item

* Free a memory block from a mail

Lys

life.augmented

osStatus osMailFree

N\

(osMailQId |queue_id} void *mail)

DZA\

Status of the operation Mail Queue handle

(bsMailQId queue_id} uint32_t millisec)

Mail Queue

osMailQIdHosMailCreiéggiiiift osMailQDef t *queue_def, osThreadId thread id)

* Allocate a memory block from a mail

void * osMailAlloc

(osMailQId queue_id, |uint32_t millisec)

"\

Mail Queue handle

Mail Queue

* Allocate a memory block from a mail and set memory block to zero

void * osMailCAlloc

Lys

life.augmented

(osMailQId queue_id, pint32_t millisec)

"\

Mail Queue handle

Queues APls

osMessageCreate() xQueueCreateStatic()
xQueueCreate()

osMessagePut() xQueueSend()
xQueueSendFromISR()

osMessageGet() xQueueReceive()
xQueueReceiveFromISR()

osMessageDelete() vQueueDelete(queue handler)

osMessageWaiting() uxQueueMessagesWaiting(queue_handler)

uxQueueMessagesWaitingFromISR(queue_handiler)

- xQueueSendToBack(queue handle,*to_queue,block_time)
xQueueSendToBackFromISR(queue handle,*to_queue,block time)

- xQueueSendToFront(queue handle,*to_queue,block_time)
xQueueSendToFrontFromISR(queue handle,*to_queue,block_time)

osMessagePeek() xQueuePeek(queue_handle,*to_queue,block_time)

osMessageAvailableSpace() Returns uxQueueSpacesAvailable

AYy/J

life.augmented

Mail Queue APls

osMailCreate() pvPortMalloc(), xQueueCreate(), osPoolCreate()
osMailAlloc() osPoolAlloc()
osMailCAlloc() osMailAlloc(),
osMailPut() xQueueSendFromISR()
xQueueSend()
osMailGet() xQueueReceiveFromISR()
xQueueReceive()
osMailFree() osPoolFree()

Lys

life.augmented

FreeRTOS
Semaphores

life.augmented

Semaphores

Semaphores are used to synchronize tasks with other events in the system (especially IRQs)
Waiting for semaphore is equal to wait() procedure, task is in blocked state not taking CPU time
Semaphore should be created before usage

In FreeRTOS implementation semaphores are based on queue mechanism
In fact those are queues with length 1 and data size 0

There are following types of semaphores in FreeRTOS:

« Binary — simple on/off mechanism

« Counting — counts multiple give and multiple take
* Mutex — Mutual Exclusion type semaphores (explained later on)
* Recursive (in CMSIS FreeRTOS used only for Mutexes)

Turn on semaphore = give a semaphore can be done from other task or from interrupt subroutine (function
osSemaphoreRelease ())

Turn off semaphore = take a semaphore can be done from the task (function osSemaphoreWait ())

Lys

lifs.qugmented

Lys

life.augmented

Semaphores: binary vs counting

blocked

blocked

blocked

. blocked
give

osSemaphoreRelease

osSemaphoreWait

Run/ready

blocked

Binary

blocked

blocked

blocked

. blocked
give

osSemaphoreRelease

osSemaphoreWait

Run/ready

blocked

Run/ready

Run/ready

osSemaphoreWait

Counting

Binary Semaphore

time
Task?2
Blocked

osSemaphoreWait

'~ Task?2
<1
) Blocked

osSemaphoreRelease osSemaphoreWait

Task?2

osSemaphoreWait

Te=%1

osSemaphoreRelease

Task2
"’ osSemaphoreWait

life.augmented

« Semaphore creation

osSemaphoreld|osSemaphoreCreate

~——_

Semaphore handle

- Wait for Semaphore release

~

int32_t |osSemaphoreWait J

Binary Semaphore

(const osSemaphoreDef t *semaphore_ def)

int32_t count)]

N~

definition

Semaphore Semaphore ‘tokens’
For binary semaphore is 1

osSemaphoreld semaphore_idjluint32_t millisec

i

Should be: Number of ‘tokens

in semapho

Semaphore handle

re’, but it is status

osStatus (in v 24.12.2014)

like

for Mutex

* Semaphore release

Lys

life.augmented

o§Status

e 0 -—nowait
* >0-—delayinms
* OXFFFEFFEFEEF - forever

How long wait for semaphore release

—7;

Return status

osSemaphoreRelease 4osSemaphoreId semaphore_idb

I —

Semaphore handle

Binary Semaphore lab

* Create two tasks Task1, Task2 with the same priorities

Reset Configuration

@ Timers and Semaphores @ Mutexes @ FrecRTOS Heap Usage
@ Include parameters @ Uszer Constants
-Tasks
TaskName | Prinritv |Stack Size ¢ [Pty Functi [Cnde Gene
Task1 osPriorityM... 128 starTask1l Default MULL Dynamic MULL MULL
Taskz osPriorityM... 128 StarTask? Default MULL Dynamic MULL MULL
Add Delete

Lys

life.augmented

Create binary semaphore

1. Select Timers and
Semaphore tab

2. Click Add button in Binary
Semaphores section

3. Set name:
myBinarySemO01

4. Click OK button
[New Binary Semaphore 31

Semaphore Name ||myBinarySem01|

Allocation Dynamic v

Control Block Mame

4 (I)

Binary Semaphore la

Configuration

Reset Configuration

@ Tirners and Sem
|

rTimers

Callback | ___Type] Code Generafi. | _Parameter] _Allocation _[Control Block .|

Add Delete
rBinary Semaphores
Control Block Name

2 Add Delete

Configuration

Reset Configuration

@ Timers and Semaphores @ Mut

@ Include parameters

Timers

Callback | Tyoe __[Code Generati_| _Parameter | _Allocation _[Control Block N._

Lys

life.augmented

Add [alete
Binary Semaphores
Control Block Name
myBinarysem01 Dynamic MULL

Add Delete

Binary Semaphore lab

» Task1 is synchronized with Task2
- Both tasks have the same priorities
 Task1 is waiting for semaphore (with 4sec delay)

- Task?2 is releasing the semaphore

ISI@ Task1 | Task2
S
PendSV PendSV
S SysTick SysTick
Task1 Task2 Task1 Task2
osSemaphoreWait osSemaphore osSemaphoreWait osSemaphore
Release Release
Blocked \ I_i_l ¥
]]

Lys

life.augmented

printf redirection to USART?Z2

» The following code should be included into main.c file to redirect printf
output stream to UART2

/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int write(int file, char *ptr, int len)

{
HAL UART Transmit (&huart2, (uint8 t *)ptr,len,10);
return len;

}
/* USER CODE END 0 */

Lys

life.augmented

Binary Semaphore lab

code processing
- Semaphore handle definition

/¥ Private variables ------------cmmmm e - e */
osThreadId TasklHandle;

osThreadId Task2Handle;

osSemaphoreld myBinarySem@lHandle;

« Semaphore creation

/* Create the semaphores(s) */

/* definition and creation of myBinarySem@l */
osSemaphoreDef (myBinarySemol);

myBinarySem@lHandle = osSemaphoreCreate(osSemaphore(myBinarySemol), 1);

Lys

life.augmented

Binary Semaphore lab

code processing

« Semaphore release usage

- |f tasks/interrupt is done the semaphore is released

void StartTaskl(void const * argument)

{

/* USER CODE BEGIN 5 */

/* Infinite loop */

for(;;)

{
osDelay(2000) ;
printf("Taskl Release semaphore\n");
osSemaphoreRelease(myBinarySem@lHandle);

}
/* USER CODE END 5 */

Lys

life.augmented

Binary Semaphore lab

code processing

« Semaphore wait usage

« Second task waits on semaphore release
After release task is unblocked and continue in work

void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
/* Infinite loop */
for(;;)
{
osSemaphoreWait(myBinarySem@1lHandle, 4000);
printf("Task2 synchronized\n");

}
/* USER CODE END StartTask2 */

Lys

life.augmented

Binary Semaphore lab

code processing

- Semaphore can be released from interrupt (if interrupt priority is below — higher
number in CortexM cores - configured
configLIBRARY MAX SYSCALL INTERRUPT PRIORITY)

- Using HAL libraries we can release semaphore in the callback (JOY_CENTER
button press):

/* USER CODE BEGIN 4 */

void HAL GPIO EXTI Callback(uintl6_t GPIO Pin)
{

¥
/* USER CODE END 4 */

osSemaphoreRelease(myBinarySem@lHandle);

life.augmented

:
Counting semaphores

« Counting semaphores can be seen as a as queues of length greater than one.
users of the semaphore (Tasks, IT) are not interested in the data that is stored in
the queue, just whether the queue is empty or not.

- Counting semaphores are typically used for two purposes:

« Counting events : an event handler will 'give' a semaphore each time an event occurs (incrementing the
semaphore count value), and a handler task will 'take' a semaphore each time it processes an event
(decrementing the semaphore count value). The count value is the difference between the number of
events that have occurred and the number that have been processed. In this case it is desirable for the
count value to be zero when the semaphore is created.

* Resource management : the count value indicates the number of resources available. To obtain control of
a resource a task must first obtain a semaphore decrementing the semaphore count value. When the count
value reaches zero there are no free resources. When a task finishes with the resource it releases (gives)
the semaphore back incrementing the semaphore count value. In this case it is desirable for the count
value to be equal the maximum count value when the semaphore is created.

Lys

life.augmented

configUSE_COUNTING SEMAPHORE

Counting semaphores

- APl is the same as for Binary semaphore

* Semaphore creation

osSemaphoreld osSemaphoreCreate (const osSemaphoreDef t *semaphore_def, int32 t count)

» Wait for Semaphore release

int33_t osSemaphoreWait (osSemaphoreld semaphore_id, uint32_t milisec)

Return value (osStatus): 1

* 0 — semaphore released within given timeout (milisec) 20— _ng ec{:lya?; ms

* OxFF — semaphore not released OxFFFFFFFF — wait forever

* Semaphore release

osStatus osSemaphoreRelease (osSemaphoreld semaphore id)

Lys

life.augmented

Counting Semaphore

Te=X1 Task2 Task3
osSemaphoreRelease

Task1 JTe='x2

osSemaphoreRelease

Task3

Task3

osSemaphoreWait

Task3

osSemaphoreWait

Task3

osSemaphoreWait

life.augmented

Counting Semaphore lab

* Create three tasks (Task1, Task2, Task3) with same priority
- Set entry function o StartTask1,2,3 respectively
- Keep all other parameters in default value

& Tasks and Cueues @ Timers and Semaphares @ hutexes @ FreceRTOS Heap Usage
@ Config parameters @ Include parameters @ User Constants
-Tasks
Task Name Priority .. ICode Gene...
Task1 osPriorityMormal 128 StartTask1l Default MULL Dynamic MULL MULL
Taskz? osPriorityMormal 128 StanTaskZ Default MLUILL Dynamic MLUILL MLUILL
J’aski‘: osPriorityMormal 128 StardTask3 Default MULL Dynamic MULL MULL

Kys

life.augmented

Counting Semaphore lab

Enable Counting semaphore

1. Select Config parameters tab
2. Change “USE_COUNTING_SEMAPHORES” to Enabled

® Tasks and Queues @ Timers and Semaphores ® Mutexes ® FreceRTOS Heap Usage
& Config parameters @ Include parameters @ User Constants
IConfigure the following parameters: |
Q|] | @ () i]
USE_MUTEXES Disabled
USE_RECURSIVE_MUTEXES Disabled
USE_COUNTING_SEMAPHORES
QUEUE_REGISTRY_SIZE 8

Lys

life.augmented

Counting Semaphore lab

@ Tasks and Queues @ Timers and Semaphores @ Mutexes @ FreeRTOS Heap Usage

C re ate C O u n ti n g Se m a p h O re @ Config parameters W NCiude parameters @ User Constants

Counting Semaphores

1. Select Timers and Semaphores tab
2. Click Add button in Counting

Semaphores section Fricn G o — ==) rii | EEEE
3. Set name to myCountingSemO01 cemptere tame [”"‘-*’C“”“”QS'W””

Set count of tokens to 2 docan
5. Click OK button

@ Tasks and Queues @ Timers and Semaphores Viutexes @ FreceRTOS Heap Usage

Count

Allocation Cynamic e

s

@ Config parameters @ Include parameters @ Lser Constants
- Counting Semaphores

Semaphore Name Count Allocation Control Block Name
myCountingSemo1 2 Dynamic MUILL

"\

Add Elelete
Kys

life.augmented

Counting Semaphore lab

» Task1 and Task2 release semaphore

» Task 3 wait for two tokens

>
o| RERSERERS YARENE!
S
PendSV PendSV

RenaSy SysTick SysTick
Task3 Task1 Task2 Task3 @ Task3
osSemaphore osSemaphore osSemaphore osSemaphore osSemaphore
Wait Release WEL Wait
Blocked ¥

o ki o o

life.augmented

printf redirection to USART?Z2

» The following code should be included into main.c file to redirect printf
output stream to UART2

/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int write(int file, char *ptr, int len)

{
HAL UART Transmit (&huart2, (uint8 t *)ptr,len,10);
return len;

}
/* USER CODE END 0 */

Lys

life.augmented

Counting Semaphore lab

 Create Counting semaphore code processing

/* Create the semaphores(s) */
/* definition and creation of myCountingSem@l */
osSemaphoreDef (myCountingSemo1l);
myCountingSem@lHandle = osSemaphoreCreate(osSemaphore(myCountingSemol), 2);

« Task1 and Task2 will be same void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
void StartTaskl(void const * argument) /* Infinite loop */
{ for(;;)
{
/* USER CODE BEGIN 5 */ osDelay(2000);
/* Infinite loop */ printf("Task2 Release counting semaphore\n");
for(;;) osSemaphoreRelease(myCountingSem@lHandle);
{ }
osDelay(2000); /* USER CODE END StartTask2 */

printf("Taskl Release counting semaphore\n"); }
osSemaphoreRelease(myCountingSem@lHandle);

}
/* USER CODE END 5 */

» Task3 will wait until semaphore will be 2 times released

Lys

life.augmented

Counting Semaphore lab

void StartTask3(void const * argument)

{

/* USER CODE BEGIN StartTask3 */

/* Infinite loop */

for(;;)

{

osSemaphoreWait(myCountingSem@lHandle, 4000);
osSemaphoreWait(myCountingSem@lHandle, 4000);
printf("Task3 synchronized\n");

}
/* USER CODE END StartTask3 */

code processing

Semaphores APls

CMSIS_RTOS API FreeRTOS API

osSemaphoreCreate() vSemaphoreCreateBinaryStatic()
vSemaphoreCreateCountingStatic()
vSemaphoreCreateBinary()
xSemaphoreCreateCounting()

osSemaphoreWait() xSemaphoreTake()
xSemaphoreTakeFromISR()

osSemaphoreRelease() xSemaphoreGive()
xSemaphoreGiveFromISR()

osSemaphoreDelete() vSemaphoreDelete()

Lys

life.augmented

Direct to task
notification

CMSIS-0OS - Signals
FreeRTOS — Task Notification

Lys

life.augmented

configUSE_TASK_NOTIFICATIONS

Direct to task notification

- FreeRTOS Direct Task notifications feature is available starting from release 8.2.0.
« Within CMSIS_OS it is covered by less featured Signals.

« Each FreeRTOS task has a 32-bit notification value. An RTOS task notification is an event sent
directly to a task that can unblock the receiving task.

« Task notifications can be used where previously it would have been necessary to create a
separate queue, binary semaphore, counting semaphore or event group. Unblocking an RTOS task
with a direct notification is 45% faster and uses less RAM than unblocking a task with a binary
semaphore.

- Task notification RAM footprint and speed advantage over other FreeRTOS feature (performing
equivalent functionalities). Nevertheless It presents following limitations:

Task notifications can only be used to notify only one Task at a time : i.e only one task can be the recipient of the event. This condition is
however met in the majority of real world applications.

If Task notification is used in place of a message queue then the receiving task (waiting for the notification) is set to the blocked state.
However The sending task (sending the notification) cannot wait in the Blocked state for a send to complete if the send cannot complete
immediately

Lys

lifs.qugmented

http://www.freertos.org/Embedded-RTOS-Queues.html
http://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
http://www.freertos.org/Real-time-embedded-RTOS-Counting-Semaphores.html
http://www.freertos.org/FreeRTOS-Event-Groups.html

configUSE_TASK_NOTIFICATIONS

Signals

« Signals are used to trigger execution states between the threads and from IRQ to
thread.

- Each thread has up to 31 assigned signal flags.

« The maximum number of signal flags is defined in cmsis_os.h
(osFeature Signals). Itis setto 8. Itis not possible to configure signals from
STM32CubeMX.

« Main functions:

* osSignalSet () - set specified signal flags of an active thread

int32_t osSignalSet (osThreadId thread_id, int32_t signals)

* osSignalWait () - wait for one or more signal flags for running thread

m osEvent osSignalWait (int32_t signals, uint32_t milisec)

life.augmented

configUSE_TASK_NOTIFICATIONS

Signals

example

We can reuse existing Tasks_lab

Let's define any signal

#define SIGNAL BUTTON PRESS 1 /* USER CODE BEGIN PD */

Task1 is waiting (being in blocked mode) for an external interrupt occurrence.
/* USER CODE BEGIN 4 */
void HAL GPIO EXTI Callback(uintl6 t GPIO Pin)

{
osSignalSet (TasklHandle, SIGNAL BUTTON PRESS) ;

}
Within external interrupt callback SIGNAL_BUTTON_PRESS is send to Task1

void StartTaskl (void const * argument)

{
for (;7)
{
osSignalWait (SIGNAL BUTTON PRESS,osWaitForever); /* USER CODE BEGIN 5 */
HAL GPIO TogglePin (LED RED GPIO Port, LED RED Pin);
}
}

. LED will be toggled on each button press.
) /4

life.augmented

configUSE_TASK_NOTIFICATIONS

Signals

osSignalSet() (given value is OR-ed with current notification value xTaskGenericNotify()

of given task — eSetBits action set in cmsis_0s.c) xTaskGenericNotifyFromISR()

osSignalClear() (empty declaration) Not available

osSignalWait() (it is clearing notification value) xTaskNotifyWait()

osSignalGet() (removed in CMSIS_OS v1.02) Not available

- xTaskNotifyGive()
vTaskNotifyGiveFromISR()

- ulTaskNotifyTake()

) xTaskNotifyStateClear()

Signals (task notifications) cannot be used:
+ To send an event or data to IRQ
« To communicate with more than one task (thread)
Lyy; - To buffer multiple data items &

life.augmented

FreeRTOS
Resources management

life.augmented

Resource management

- Critical sections — when it is necessary to block small piece of code inside the task against
task switching or interrupts. This section should start with macro
taskENTER CRITICAL (), and should end with macro taskEXIT CRITICAL ()

- Suspendig the scheduler — when waiting on interrupt and no task switching allowed.
Function vTaskSuspendAll () block context switching with interrupts enabled. Unblock
the tasks is done by xTaskResumeAll () function.

It is not allowed to run any FreeRTOS API function when scheduler is suspended.

- Gatekeeper task
» Dedicated procedure managing selected resource (i.e. peripheral)
No risk of priority inversion and deadlock
It has ownership of a resource and can access it directly
Other tasks can access protected resource indirectly via gatekeeper task
Example: standard out access

 Mutexes

» Kind of binary semaphore shared between tasks
arquire set configUSE MUTEXES at 1 in FreeRTOSConfig.h

) /4

life.augmented

Critical sections

- Critical section mechanism allows to block all the interrupts during sensitive/atomic
operation execution (like operations on queues)
* To enter into critical section portENTER CRITICAL () should be used

- To exit from critical section portEXIT CRITICAL () should be used

void function (void)
l—

{ / Storing current BASEPRI value (current level of interrupt masking) and
POortENTER_CRITICAL() ; programming BASEPRI with MASK value *)
\j means masking of all interrupts below this value

..sensitive code
execution o

| —

restoring BASEPRI value and masking of all interrupts below this value

portEXIT CRITICAL(); |

*) MASK = configLIBRARY MAX_SYSCALL_INTERRUPT_PRIORITY<<(8- configPRIO_BITS)

. .

‘,’ defined in FreeRTOSConfig.h = 4 for CortexM3, CortexM4 based STM32

lifs.qugmented

Gatekeeper task

- Gatekeeper is a task being the only allowed to access certain resources
(i.e. peripheral).

* It owns selected resource and only it can access it directly; other tasks can do it
Indirectly by using services provided by the gatekeeper task.

* There is nothing physically preventing other tasks from accessing the resource - it is on the
designer side to program it proper way

e It is providing clean method to implement mutual exclusion without risk of priority
Inversion or deadlock.

* It spends most of the time in the blocked state waiting for the requests on the
owned resources

* It is up to the designer to set the priority of the gatekeeper and its name.

Lys

life.augmented

FreeRTOS
Mutex

life.augmented

Mutex 1/2

* Mutex is a binary semaphore that include a priority inheritance mechanism.
* binary semaphore is the better choice for implementing synchronization
(between tasks or between tasks and an interrupt),

« mutex is the better choice for implementing simple mutual exclusion (hence
'MUT'ual 'EX'clusion).

* When used for mutual exclusion the mutex acts like a token that is used to guard a
resource.
« When a task wishes to access the resource it must first obtain (‘take') the token.
« When it has finished with the resource it must 'give' the token back - allowing
other tasks the opportunity to access the same resource.
 In case of recursive mutex it should be given as many times as it was
successfully taken (like counting semaphores) to release it for another task.

Lys

lifs.qugmented

Mutex 2/2

Mutexes use the same access API functions as semaphores — this permits a block
time to be specified.

The block time indicates the maximum number of 'ticks' that a task should enter the
Blocked state when attempting to 'take' a mutex if the mutex is not available
iImmediately.

Unlike binary semaphores however - mutexes employ priority inheritance. This
means that if a high priority task is blocked while attempting to obtain a mutex
(token) that is currently held by a lower priority task, then the priority of the task
holding the token is temporarily raised to that of the blocked task.

Mutex Management functions cannot be called from interrupt service routines
(ISR).

A task must not be deleted while it is controlling a Mutex. Otherwise, the Mutex
resource will be locked out to all other tasks

Lys

lifs.qugmented

Mutex, Semaphore — threats 1/3

Priority inversion

- This is the situation where a higher priority task is waiting for a lower priority task
to give a control of the mutex and low priority task is not able to execute.

life.augmented

Priority inheritance

It is temporary raise of the priority of the mutex holder to that of the highest
priority task that is attempting to obtain the same mutex. The low priority task that
holds the mutex inherits the priority of the task waiting for the mutex. The priority
of the mutex holder is reset automatically to its original value when it gives the
mutex back.

It is @ mechanism that minimizes the negative effects of priority inversion

It is complicating system timing analysis and it is not a good practice to rely on it
for correct system operation

Lys

ife.augmented

Mutex, Semaphore — threats 3/3

Deadlock (Deadly Embrace)

- It occurs when two tasks cannot work because they are both waiting for a resource
held by each other

* The best way to avoid deadlock is to consider them at design time and design the
system to be sure that the deadlock cannot occur.

life.augmented

Mutex

» Used to guard access to limited recourses

» Works very similar as semaphores

Task1

osMutexWait Resource Resource
Task2 Task?2

Blocked

osMutexWait osMutexWait

Task1 Task1
osMutexRelease . Resource . Resource

Task2 Task2

Blocked

"’ osMutexWait

life.augmented

osMutexRelease

configUSE_MUTEXES

* Mutex creation

osMutexId]osMutexCreate

|

Mutex handle

» Wait for Mutex release

const osMutexDef t *mutex_def

S~
Mutex definition

osStatus|osMutexWait {osMutexId mutex_idf|uint32_t millisec)

EZAN

~—

Return status

* Mutex release

Lys

life.augmented

osStatus|osMutexRelease

70—

Return status

Mutex handle How long wait for
mutex release

(osMutexId mutex_id)]

S

Mutex handle

Mutex

configUSE_RECURSIVE_MUTEXES

* Recursive mutex creation

osMutexId]osRecursiveMutexCreate

T~

Mutex handle

» Wait for Recursive mutex release

osStatus

AN

Recursive mutex

(const osMutexDef_t *mutex_def}

I~

Mutex definition

osRecursiveMutexWait [osMutexId mutex_idL

Return status

uint32=t millisec

* Recursive mutex release

Lys

life.augmented

osStatus

/“\

osRecursiveMutexRelease

Return status

~—

Mutex handle

How long wait for
mutex release

(osMutexId mutex_id}

|

Mutex handle

Mutex lab

Create two tasks: Task1, Task2 with same priorities
* Click Add button in Tasks section

- Set parameters (entry functions, stack size)
» Click OK button

& Tasks and Queues @ Timers and Semaphares & hutexes @ FreeRTOS Heap Usage

@ Config parameters @ Include parameters @ User Constants
-Tasks

Task Mamea Prinrity Star: IFntrv Functi 1Cnde Gene Control Blo...

(Task‘l osPriorityMormal 128 StardTaskl Default MULL Dynamic MULL MULL

TaskZ osPriorityMormal 128 StardTaskZ2 Default MULL Dynamic MULL MULL

Kys

life.augmented

configUSE_MUTEXES

Enable Counting semaphore

1. Select Config parameters tab
2. Change “USE_MUTEXES” to Enabled

@ Tacks and Queues @ Timers and Semaphores @ hutexes

Mutex lab

@ FrecRTOS Heap Usage

@ Config parameters @ Include parameters

@ Llser Constants

IConfigure the following parameters:

Q| i |
USE_MUTEXES
USE_RECURSIVE_MUTEXES Disabled
USE_COUNTING_SEMAPHORES Enabled

Lys

life.augmented

Mutex lab

A d d M u .t eX @ Tasks and Queues @ Timers and Semaphores & Mutexes @ FreeRTOS Heap Usage

@ Config parameters @ Include parameters @ User Constants

- Mutexes

» Select Mutexes tab Alocaion
* Click Add button in Mutexes section
» Set Mutex name to myMutex01

» Click OK button | newmutex == =R o

Mutex Name myMutex0|

Zontrol Block Mame

Allocation Dynamic e

Control Block Mame

] 24 l Cancel

% @ Tasks and Queues @ Timers and Semaphaores @ Mutexes @ FrecRTOS Heap Usage
@ Config parameters @ Include parameters @ User Constants
-Mutexes
Mutex Mame Allocation Contral Block Mame
[myMutex01 Cynamic MULL

Delete
1S7]

life.augmented

Mutex lab

- Both tasks use printf function.

* Mutex is used to avoid collisions

=>
S
O

PendSV
SysTick

Task1 | Task1 Task1 Task?2 | Task2 Task2

osMutexRelease osMutexWait code osMutexRelease

osMutexWait code

it a it t

\ J \)
\ \

Only one task can have mutex Only one task can have mutex

Lys

life.augmented

printf redirection to USART?Z2

» The following code should be included into main.c file to redirect printf
output stream to UART2

/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int write(int file, char *ptr, int len)

{
HAL UART Transmit (&huart2, (uint8 t *)ptr,len,10);
return len;

}
/* USER CODE END 0 */

Lys

life.augmented

Mutex lab

* Mutex handle definition

/* Private variables --------------cmmm e - */
osThreadId TasklHandle;

osThreadId Task2Handle;

osMutexId myMutex©lHandle;

* Mutex creation
/* Create the mutex(es) */

/* definition and creation of myMutex@l */

osMutexDef (myMutex01l);
myMutex@lHandle = osMutexCreate(osMutex(myMutexo0l));

Lys

life.augmented

* Tas

VO

{

Lys

lifs.qugmented

k1 and Task2 using of Mutex
id StartTaskl(void const * argument)

/* USER CODE BEGIN 5 */

/* Infinite loop */

for(;;)

{
osDelay(2000);
osMutexWait(myMutex@1lHandle, 1000);
printf("Taskl Print\n");
osMutexRelease(myMutex@lHandle);

¥
/* USER CODE END 5 */

Mutex lab

void StartTask2(void const * argument)

{

/* USER CODE BEGIN StartTask2 */

/* Infinite loop */

for(;;)

{
osDelay(2000);
osMutexWait(myMutex@lHandle, 1000);
printf("Task2 Print\n");
osMutexRelease(myMutex@lHandle);

}
/* USER CODE END StartTask2 */

Mutex APIs

CMSIS_RTOS API FreeRTOS API

osMutexCreate()
osMutexRelease()
osMutexWait()

osMutexDelete()
osRecursiveMutexCreate()

osRecursiveMutexRelease()

osRecursiveMutex\Wait()

Lys

life.augmented

xSemaphoreCreateMutexStatic()
xSemaphoreCreateMutex()

xSemaphoreGive()
xSemaphoreGiveFromISR()

xSemaphoreTake()
xSemaphoreTakeFromISR()

vQueueDelete()

xSemaphoreCreateRecursiveMutexStatic()
xSemaphoreCreateRecursiveMutex()

xSemaphoreGiveRecursive()

xSemaphoreTakeRecursive()

FreeRTOS
Software Timers

life.augmented

http://img.clubic.com/06080356-photo-sony-smartwatch-2.jpg

Software Timers (1/3)

» Software timer is one of standard component of every RTOS

* FreeRTOS “software” Timers allows to execute a callback at a set of time (timer
period). Timer callback functions execute in the context of the timer service task.

* |t is therefore essential that timer callback functions never attempt to block. For
example, a timer callback function must not call vTaskDelay(), vTaskDelayUntil(),
or specify a non zero block time when accessing a queue or a semaphore.

life.augmented

Software Timers (2/3)

* Itis not precise, intended to handle periodic actions and delay generation
« Can be conditionally used to extend number of hardware timers in STM32

« Two types od software timers are available:
 Periodic (execute its callback periodically with autoreload functionality)

Task1 Software Software Software
Timer Timer Timer
osTimerStart Callback Callback Callback

Software timer counting = Software timer counting Software timer counting

« One Pulse (execute its callback only once with an option of manual re-trigger)

Task1 Software
Timer

osTimerStart Callback

Software timer counting

Lys

life.augmented

Software Timers (3/3)

- When Timers are enabled (configUSE_TIMERS enabled) , the scheduler creates automatically the
timers service task (daemon) when started (calling xTimerCreateTimerTask () function).

* The timers service task is used to control and monitor (internally) all timers that the user will create.

» The timers task parameters are set through the fowling defines (in FreeRTOSConfig.h):
« configTIMER _TASK PRIORITY : priority of the timers task
« configTIMER _TASK STACK DEPTH : timers task stack size (in words)

« The scheduler also creates automatically a message queue used to send commands to the timers
task (timer start, timer stop ...) .

* The number of elements of this queue (number of messages that can be hold) are configurable
through the define:

. configTIMER_QUEUE_LENGTH.

Lys

life.augmented

configUSE_TIMERS

Software Timers

configuration

» Software timer is one of standard component of every RTOS

Config field description
(default value)

configUSE_TIMERS
(0O — disabled)

configTIMER_TASK_PRIORITY

()

configTIMER_QUEUE_LENGTH

()
configTIMER_TASK_STACK_DEPTH
()

Lys

life.augmented

1 — includes software timers functionality and automatically creates
timer service task on scheduler start
O — disabled, no timer service task

Priority for timer service task from the range between IDLE task
priority and configMAX PRIORITIES-1

This sets the maximum number of unprocessed commands that the
timer command queue can hold at any one time.

Sets the size of the stack (in words, not bytes) allocated to the timer
service task.

configUSE_TIMERS

» Software timer creation

Software Timers

osTimerId| osTimerCreate {const osTimerDef t *timer_def],|os_timer type type} void *argument)

N IN_

Timer handle Timer definition Repeat timing or
onetime timing

» Software timer start

osStatus|osTimerStart |osTimerId timer idj|uint32 t millisec)

\\\\> YT\\\._.
Return status] Timer handle Timer period

» Software timer stop

osStatus|osTimerStop |[(osTimerId timer id)

7 =

Return status Timer handle

Lys

life.augmented

Software Timers lab

- Software timers are disabled by default in STM32CubeMX
* To enable them:

« Select Config parameters tab
« Set USE_TIMERS value to Enabled
» Other software timers parameters we will keep in default configuration

Tasks and Clueues Timers and Semaphores @ FreeRTOS Heap Usage
@ Config parameters @ Include parameters @ User Constants
[Configure the following parameters: |

Q| ' | @ ® (]

LSE_TICK_HOOK Disabled

LSE_MALLOC_FAILED _HOOK Enabled

LISE_DAEMON_TASK_STARTUP_HOOK Disabled

CHECK_FOR_STACK_OVERFLOW Disabled
 Runtime and task stats gathering related definitions

GEMERATE_RUM_TIME_STATS Disabled

LISE_TRACE_FACILITY Disabled

USE_STATS_FORMATTING_FUNCTIONS Disabled
w Co-routine related definitions

LSE_CO_ROUTIMNES Disabled

MAX_CO_ROUTIMNE_PRICORITIES 2

~ Sofiware timer definifions
[MUSE_TIMERS
r * TIMER_TASK_PRIORITY z
,’ * TIMER_QUEUE_LENGTH 10

life.augmented * TIMER_TASK_STACK_DEPTH 256 Words

Software Timers lab

* Create one task, Task1 with entry function StartTask1 and normal priority

Lys

life.augmented

& Tacsks and Queues

W COnfig parameters

| ® Timers and @ hutexes @ FreeRTOS Heap Usage

@ Include parameters @ User Constants

-Tazks

Task Mame
Taskl

Priority Stac...JEntry Functi...]JCode Gene...| Parameter | Allocation |Buffer Mame|Control Blo...

osPriorityMormal 128

StartTask1l Default MULL Cynamic MULL MULL

Software Timers lab

Create a new timer
» Select Timers and Semaphores tab
* Click Add button in Timers

;and Clueues | [ESTmErs and Semaphiores @ Mutexes @ FreeRTOS Heap Usage
g parameters W INClUde pararmeters

Timers

Callback | Type __|Code Generati..{ _Parameter | __Allocation _|Cantrol Block ..

Add Delete
. S_et timer name: i.e. myTlmerO1 — e
* Timer callback name: i.e. Callback01 Timer Name S
. . Callback Callback0
e Type PGFIOdIC Type osTimerPernodic R

. Code G tion Option [Default
CIICk OK button F'Zraemete:rera . . Nljftl -

Allocation Oynamic o
Control Block Name

Cancel

@ Tasks and Queues @ Timers and Semaphores @ Mutexes
@ Config parameters @ Include parameters

rTimers

Timer Mame
myTimerd1

Callback
Callback0

Code Generati... Parameter
asTimerPeriodic Default MULL

Dynamic

Lys

life.augmented

printf redirection to USART?Z2

» The following code should be included into main.c file to redirect printf
output stream to UART2

/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int write(int file, char *ptr, int len)

{
HAL UART Transmit (&huart2, (uint8 t *)ptr,len,10);
return len;

}
/* USER CODE END 0 */

Lys

life.augmented

Software Timers lab

» Software timer handle definition

/* Private variables ---------cccmcmmm e e e */
osThreadId TasklHandle;
osTimerId myTimer@lHandle;

» Software timer creation

/* Create the timer(s) */

/* definition and creation of myTimerel */

osTimerDef(myTimer@l, Callbackel);

myTimer@lHandle = osTimerCreate(osTimer(myTimer@l), osTimerPeriodic, NULL);

« Software timer start

void StartTaskl(void const * argument)
{
/* USER CODE BEGIN 5 */
osTimerStart(myTimer@lHandle,1000);
/* Infinite loop */
for(;;)
{
osDelay(2000);
printf("Taskl Print\n");

‘:"" }
,’ /* USER CODE END 5 */

life.augmented }

Software Timers lab

» Timer callback functions execute in the context of the timer service task.
 Timer callbacks are not called from interrupt context.

* There should be no blocking functions inside (like in hooks)

/* Callback@l function */
void Callback@l(void const * argument)

{ {
/* USER CODE BEGIN Callbackel */ /* USER CODE
printf("Timer Print\n"); printf("Timer
/* USER CODE END Callbackel */

}

Lys

life.augmented

Software Timers APIs

osTimerCreate() xTimerCreateStatic()
xTimerCreate()

os TimerStart() xTimerChangePeriod()
xTimerChangePeriodFromISR()

osTimerStop() xTimerStop()
xTimerStopFromISR()

osTimerDelete() xTimerDelete()

- xTimerGetTimerDaemonTaskHandle()
- xTimerGetPeriod()

- xTimerGetExpiryTime()

- pcTimerGetName()

- xTimerGenericCommand()

Lys

life.augmented

FreeRTOS
advanced topics

life.augmented

Hooks

- Hooks are the callbacks supported by FreeRTOS core
* Those can help with FreeRTOS fault handling

* Type of hooks:

* |dle Hook

* Tick Hook

* Malloc Failed Hook

« Stack Overflow Hook

« STM32CubeMX creates hook functions in freertos.c file

Lys

lifs.qugmented

configUSE_IDLE_HOOK

|ldle task and “idle task hook”

 |dle task is automatically created by scheduler within osKernelStart () function

* |t has the lowest possible priority

* It runs only if there are no tasks in ready state

* |t can share same priority with other tasks

+ Specific function (called idle task hook function) can be called automatically from idle task.
lts prototype is strictly defined:

* void vApplicationIdleHook (void) ; /I [weak] version in freertos.c file

» configUSE_IDLE_HOOK must be set to 1 in FreeRTOSConfig.h to get it called
* it must never attempt to block or suspend
* itis responsible to cleanup resources after deletion of other task

* it is executed every iteration of the idle task loop, do not put any endless loop inside

void vApplicationIdleHook (void)

void vApplicationIdleHook (void) { while (1)

.) {
} tick IDLE++; tick IDLE++;

Kys }

1te-ugmented Correct Wrong

: |dle Hook

* If the scheduler cannot run any task it goes into idle mode

» |dle hook is callback from idle mode

» Within this task is possible to put power saving function

* It is necessary to enable it within Config parameters (part of
FreeRTOSConfig.h configuration file)

@ Tasks and Queues @ Timers and Semaphores @ hutexes @ FrecRTOS Heap Usage
@ Config parameters @ Include parameters @ User Constants
IConfigure the following parameters: |
Q| - | @ O i)
~ Hogk function related definitions
USE_IDLE_HOOK Enabled
USE_TICK_HODOK Enabled
USE_MALLOC_FAILED_HOOK Enabled
USE_DAEMON_TASK_STARTUP_HOOK Disabled
CHECK_FOR_STACK_OVERFLOW Option2

Lys

life.augmented

configUSE_IDLE_ HOOK

|dle Hook

- |dle hook callback in freertos.c created by STM32CubeMX

/* USER CODE END FunctionPrototypes */
/* Hook prototypes */
void vApplicationIdleHook(void);

/* USER CODE BEGIN 2 */

__weak void vApplicationIdleHook(void)

{
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
task. It is essential that code added to this hook function never attempts
to block in any way (for example, call xQueueReceive() with a block time
specified, or call vTaskDelay()). If the application makes use of the
vTaskDelete() API function (as this demo application does) then it is also
important that vApplicationIdleHook() is permitted to return to its calling
function, because it is the responsibility of the idle task to clean up
memory allocated by the kernel to any task that has since been deleted. */

¥
/* USER CODE END 2 */

Do not use blocking functions (osDelay (), ...) in this function or while(1)

Lys

life.augmented

:
Tick Hook

 Every time the SysTick interrupt is trigger the TickHook is called

* |s possible use TickHook for periodic events like watchdog refresh

* It is necessary to enable it within Config parameters (part of FreeRTOSConfig.h
configuration file)

@ Tazks and Cueues @ Timers and Semaphores @ hutexes @ FrecRTOS Heap Usage
@ Config parameters @ Include parameters @ User Constants
IConfigure the following parameters: |
Q| - | ©)]
~ Hook function related definitions
USE_IDLE_HOOK Enabled
USE_TICK_HOOK Enabled
USE_MALLOC_FAILED_HOOK Enabled
USE_DAEMON_TASK_STARTUP_HOOK Disabled
CHECK_FOR_STACK_OVERFLOW Option2

Lys

life.augmented

Tick Hook

* Tick hook callback in freertos.c created by STM32CubeMX

/* Hook prototypes */
void vApplicationTickHook(void);

/* USER CODE BEGIN 3 */
__weak void vApplicationTickHook(void)

{
/* This function will be called by each tick interrupt if

configUSE_TICK HOOK is set to 1 in FreeRTOSConfig.h. User code can be
added here, but the tick hook is called from an interrupt context, so
code must not attempt to block, and only the interrupt safe FreeRTOS API
functions can be used (those that end in FromISR()). */

¥
/* USER CODE END 3 */

* Do not use blocking functions (osDelay, ...) in this function or while(1)

» Use only the interrupt safe FreeRTOS functions (with suffix FromISR()).

Lys

life.augmented

Memory management models - monitoring

Malloc Failed Hook Function

» Memory allocation schemes implemented by heap 1.c, heap 2.c, heap 3.c, and heap 4 and
heap 5.c can optionally include malloc () failure hook (or callback) function that can be configured
to get called on pvPortMalloc () returning NULL.

* Definingmalloc () failure hook will help to identify problems caused by lack of heap memory;
especially when call to pvPortMalloc () fails within an API function.

 Malloc failed hook will only get called if configUSE_MALLOC_FAILED HOOK is setto 1in
FreeRTOSConfig.h. When it is set, an application must provide hook function with the following
prototype:

vold vApplicationMallocFailedHook (void)

Lys

life.augmented

http://www.freertos.org/a00111.html

configUSE_MALLOC_FAILED HOOK

* Helps to react on malloc problems, when function return is not handled

* It is necessary to enable it within Config parameters (part of FreeRTOSConfig.h configuration file)

@ Tasks and Cueues @ Timers and Semaphores

@ Config parameters

IConfigure the following parameters:

I:"] o e
A Wod Wt

~ Hook function related definitions

USE_IDLE_HOOK Enabled
USE_TICK_HOOK Enabled
USE_MALLOC_FAILED_HOOK Enabled
USE_DAEMON_TASK_STARTUF_HOOK Disabled
CHECK_FOR_STACK_OVERFLOW Option2

Lys

life.augmented

Malloc Failed Hook

 This callback is called if the memory allocation process fails (pvPortMalloc() returns NULL)

@ Mutexes
@ Include parameters

@ FreeRTOS Heap Usa e
@ ser Constants

-
- Malloc Failed Hook

- Malloc Failed hook callback skeleton is present in freertos.c created by STM32CubeMX

/* Hook prototypes */
void vApplicationMallocFailedHook(void);

/* USER CODE BEGIN 5 */

__weak void vApplicationMallocFailedHook(void)

{
/* vApplicationMallocFailedHook() will only be called if
configUSE MALLOC_ FAILED HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
function that will get called if a call to pvPortMalloc() fails.
pvPortMalloc() is called internally by the kernel whenever a task, queue,
timer or semaphore is created. It is also called by various parts of the
demo application. If heap 1.c or heap_2.c are used, then the size of the
heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
to query the size of free heap space that remains (although it does not
provide information on how the remaining heap might be fragmented). */

}
/* USER CODE END 5 */

* Do not use blocking functions (osDelay () , ...)in this function or while(1)

Lys

life.augmented

Malloc Failed Hook

* Let’s try to implement and test Malloc Failed hook mechanism
- Simple example of Malloc Failed hook (main.c):

/* USER CODE BEGIN 5 */
void vApplicationMallocFailedHook(void)

{
printf("malloc fails\n");
}
/* USER CODE END 5 */
* Do impossible memory allocation within one of our tasks /* Private variables ------------- */
osThreadId TasklHandle;
void StartTaskl(void const * argument) osPoolId PoolHandle;
{

/* USER CODE BEGIN.S_*/
osPoolDef(MemoryJ@xl@@@@@@ ,uint8 t);
/* Infinite loop */

for(;;) Impossible memory allocation
{
PoolHandle = osPoolCreate(osPool(Memory));
osDelay(5000);
}
/* USER CODE END 5 */

Lys

life.augmented

Stack overflow protection

check of stack ‘high watermark

- During task creation, its stack memory space is filled with 0xA5 data
« During run time we can check how much stack is used by task — stack ‘high water mark’

+ To turn on this mechanism, some additional configuration of FreeRTOS is required (FreeRTOSConfig.h file or
STM32CubeMX FreeRTOS configuration window):

 configUSE TRACE FACILITY should be defined to 1
 INCLUDE uxTaskGetStackHighWaterMark should be defined to 1
« There is a dedicated function to perform this operation:
uxTaskGetStackHighWaterMark (xTaskHandle xTask) ;

- After call it with task handle as an argument returns the minimum amount of remaining stack for xTask is
presented (NULL means task which is currently in RUN mode).

+ Additional configuration within FreeRTOSConfig.h is required

Lys

life.augmented

Stack overflow protection

runtime stack check mechanism

Stack Overflow Detection - Option 1
Stack can reach its deepest value after the RTOS kernel has swapped the task out of the Running state because this is
when the stack will contain the task context. At this point RTOS kernel can check whether processor stack pointer remains
within valid stack space. Stack overflow hook function is called, if the stack pointer contains value outside of the valid stack
range.

« This method is quick but it can’t guarantee catching all stack overflows.
To use this option only set configCHECK_FOR_STACK_OVERFLOW to 1.

Stack Overflow Detection - Option 2
When task is first created, its stack is filled with a known value. When swapping task out of the Running state, RTOS kernel
can check last 16 bytes within valid stack range to ensure that these known values have not been overwritten by the task or
interrupt activity. Stack overflow hook function is called should any of these 16 bytes not remain at their initial value.

« This method is less efficient than method one, but still fast. It is very likely to catch stack overflows but is still not guaranteed
to catch all overflows.

» To use this method in combination with option 1 set configCHECK_FOR_STACK_OVERFLOW to 2 (this is not possible to
use only this option).

Lys

life.augmented

Stack overflow protection

runtime stack check mechanism in STM32CubeMX

* FreeRTOS is able to check stack against overflow

» Two options are available (to be configured within Config parameters (FreeRTOSConfig.h file):
» Option 1
» Option 2

@ Tasks and Glueues @ Timers and Semaphores

@ Config parameters @ Include paramet

IConfigure the following parameters:

Q| i | @© ®

~ Hook function related definitions
USE_IDLE_HOOK Enabled
USE_TICK_HOOK Enabled
USE_MALLOC FAILED HOOK Enabled
USE_DAEMOMN_TASK_STARTUF_HOOK Disabled
CHECK_FOR_STACK_OVERFLOW Option2

Lys

life.augmented

Stack overflow protection

stack overflow hook implementation

Stack overflow hook function is a function called by the kernel at detected stack overflow

It should be implemented by the user. Its declaration should look like:
° vApplicationStackOverflowHook (xTaskHandle *pxTask, signed char *pcName) ;

lts skeleton is generated by STM32CubeMX in freertos.c file

/* Hook prototypes */
void vApplicationStackOverflowHook(xTaskHandle xTask, signed char *pcTaskName);

/* USER CODE BEGIN 4 */
__weak void vApplicationStackOverflowHook(xTaskHandle xTask, signed char *pcTaskName)

{

/* Run time stack overflow checking is performed if
configCHECK FOR_STACK OVERFLOW is defined to 1 or 2. This hook function is
called if a stack overflow is detected. */

}

/* USER CODE END 4 */

* Do not use blocking functions (osDelay () , ...)or while(1) in this function

Lys

life.augmented

Statistics

+ To collect runtime statistics of OS components, there is dedicated function:

osThreadList ()

 This function is calling vTaskList () within FreeRTOS API and is collecting information about all
tasks and put them to the table

 Function triggering and data formatting should be implemented by the user

 To run this function you need to set two definitions (define its values to 1):
configUSE_TRACE_FACILITY

configUSE_STATS _FORMATTING_FUNCTIONS - it should be added manually to FreeRTOSConfig.h or within
STM32CubeMX configuration window for FreeRTOS

Lys

life.augmented

FreeRTOS — debug support

TrueStudio

life.augmented

FreeRTOS debug support

STLink and JLink

» True Studio provides a FreeRTOS plugin that can be used to display a snapshot of tasks, queues, semaphores
and timers each time the debugger is paused or single stepped.

[View Run Window Help

* |t can be enabled within debug session. e pesecie
View ->FreeRTOS

AR 31 HiiEA R R

Toppers
ThreadX
RTXC
uC/OS-1I
FreeRTOS
eTaskSync
embO5
MTB

tion]

&2 FreeRTOS Queues

&% FreeRTOS Task List

&2 FreeRTOS Semaphores
& FreeRTOS Timers

* ¥ ¥ ¥ v v v v v ¥

Nessssesn

il
-‘

rTLAITR v T

 After selection of i.e. FreeRTOS Task List there will be an additional window present, then after run and pause of
the code, the list of task till be displayed

El Console 1 FreeRTOS Task List &2

Mame Priority (Bas... Start of Stack Top of Stack 5State Event Object Min Free 5t.. Run Time (%)
= Gyro_Task N/A/3 0x20000098 0x20000234 RUNNING Disabled 12008 |

IDLE N/A/O 0x20000b80 0x20000d34 READY Disabled 0%

LCD_Task N/A/3 0x20000300 0x2000041c BLOCKED 0x20000b34 Disabled 0%

LED_Task N/A/3 0x200007d0 0x200008ec BLOCKED (0x20000ad4 Disabled <1%

UART Task N/A/3 0x20000568 0x20000684 BLOCKED 0x20000a5c Disabled 0%

Lys

life.augmented

FreeRTOS
low power modes

w/

life.q

FreeRTOS and low power modes

Tickless idle mode operation

- Kernel can stop tick interrupt and place MCU in low power mode, on exit from this mode tick counter
Is updated

* Enabled when setting configUSE_TICKLESS IDLE as 1

 The kernel will call a macro (tasks.c) portSUPPRESS TICKS AND SLEEP () when the Idle task is
the only task able to run (and no other task is scheduled to exit from blocked state after n* ticks)

* FreeRTOS implementation of port SUPRESS TICKS AND SLEEP for cortexM3/M4 enters MCU in
sleep low power mode

« Wakeup from sleep mode can be from a system interrupt/event

« User implementation can be done by setting configUSE_ TICKLESS IDLE above 1 (to avoid usage
of kernel macros)

- Lowest power consumption can be achieved by replacing default SysTick by LowPower timers
(LPTIM or RTC) as tick timer

KYI *) n value is defined in FreeRTOS.h file

life.augmented

|ldle task code

- |[dle task code is generated automatically when the scheduler is started
* |t is portTASK _FUNCTION() function within task.c file
* [t is performing the following operations (in endless loop):

» Check for deleted tasks to clean the memory

taskYIELD() if we are not using preemption (configUSE_PREEMPTION=0)

Get yield if there is another task waiting and we set configIDLE_ SHOULD YIELD=1

Executes vApplicationldleHook() if configUSE_IDLE HOOK=1
Perform low power entrance if configUSE_TICKLESS IDLE!=0) -> let’s look closer on this

Lys

life.augmented

Perform low power entrance

Idle task code

» Check expected idle time and if it is bigger than configEXPECTED IDLE_TIME BEFORE_SLEEP
(setto 2 in FreeRTOS.h) then continue

» Suspend all tasks (stop scheduler)
» Check again expected idle time by prvGetExpectedldie Time()

+ execute configPRE_SUPPRESS_ TICKS AND SLEEP PROCESSING with expected idle time and if
is bigger than configEXPECTED IDLE_TIME _BEFORE_SLEEP (setto 2 in FreeRTOS.h) then
continue

+ Execute portSUPPRESS_ TICKS AND SLEEP() with expected idle time and enter into low power
mode

Low power mode

« Wakeup from low power mode and resume all tasks (start scheduler)

Lys

life.augmented

Perform low power entrance

configPRE_SUPPRESS_TICKS_AND SLEEP PROCESSING

* |t is an empty macro defined in FreeRTOS.h file, needs to be defined by the user

* We should define this macro to set xExpectedldleTime to O if the application does
not want portSUPRESS TICKS_AND_SLEEP() to be called

life.augmented

Perform low power entrance

portSUPPRESS_TICKS_AND_SLEEP

- |t is an empty macro defined in FreeRTOS.h file, needs to be defined by the user
* |t is usually done in port functions (i.e. portmacro.h for gcc)

* There is an assignment to function i.e. vPortSuppressTicksAndSleep() which is
defined as “weak” within port.c

 This function is called with the scheduler suspended

life.augmented

FreeRTOS
footprint

w/

life.q

RTOS’es ported to STM32 - comparison

Preemptive | Yes 255 255 IAR/Keil ROM: 3.904
or RAM: 0.748
cooperative
Preemptive | Yes unlimited | unlimited IAR/Keil ROM: 2.7-3.6
or /gce RAM: 0.19
cooperative
Preemptive | Yes 256 255 IAR/Keil ROM: 2
RAM: 0.2
Preemptive | Yes 256 Unlimited (tasks | ARM/Keil ROM:1.5-3
defined) RAM < 0.5
256 (tasks active)
Preemptive | Yes 256 unlimited IAR ROM:1.7
RAM :0.06

Lys

life.augmented

Thank you

