
FreeRTOS on STM32
CMSIS_OS API

T.O.M.A.S – Technically Oriented Microcontroller Application Services

v1.7

Agenda
• FreeRTOS

• Operating system: what is … ?

• Basic features

• CMSIS_OS API vs FreeRTOS API

• FreeRTOS and STM32CubeMX

• Configuration

• Memory allocation

• Scheduler

• Tasks

• Intertask communication

• Queues (messages, mail)

• Semaphores (binary, counting)

• Signals

• Resources management

• Mutexes

• Software Timers

• Advanced topics (hooks, stack overflow protection, gatekeeper task)

• Debugging

• Low power support (tickless modes)

• Footprint

Operating System

what is … ?

What is Task?

• It is C function:

• It should be run within infinite loop, like:

for(;;)

{

/* Task code */

}

• It has its own part of stack, and priority

• It can be in one of 4 states (RUNNING,
BLOCKED, SUSPENDED, READY)

• It is created and deleted by calling API functions

SuspendedSuspended

ReadyReady

BlockedBlocked

RunningRunning

START

What is scheduler?
• The scheduler is an algorithm determining which task to execute.

• Is select one of the task being ready to be executed (in READY state)

• There are few mechanisms controlling access to CPU for tasks (timeslice, preemption, idle)

• In FreeRTOS round-robin scheduling algorithm is implemented

• Round-robin can be used with either preemptive or cooperative multitasking

Task1

Priority level

High priority

Low priority

time

Task1

Task2Task2

Task1

Priority level

High priority

Low priority

time

Task2Task2

What is OS heap?

STACK (for main

application and IRQs)

STACK (for main

application and IRQs)

Data memory

start

end

HEAP (for main

application)

HEAP (for main

application)

HEAP (for FreeRTOS)HEAP (for FreeRTOS)

TASK A

TASK B

QUEUE 1

TCB (Task Control

Block) ~88B

Stack of the Task A

Queue control block

~84B

Queue storage area

free memoryfree memory

FreeRTOS

basic features

About FreeRTOS (1/2)

• Market leading RTOS by Real Time Engineers Ltd.

• Professionally developed with strict quality management

• Commercial versions available: OpenRTOS and SafeRTOS

• Documentation available on www.freertos.org

• Free support through forum (moderated by RTOS author Richard Barry)

http://www.freertos.org/

About FreeRTOS (2/2)

• FreeRTOS is licensed under a modified GPL and can be used in commercial

applications under this license without any requirement to expose your proprietary

source code. An alternative commercial license option is also available.

• FreeRTOS license details available on :

http://www.freertos.org/a00114.html

• In the STM32Cube firmware solution FreeRTOS is used as real time operating

system through the generic CMSIS-OS wrapping layer provided by ARM. Examples

and applications using the FreeRTOS can be directly ported on any other RTOS

without modifying the high level APIs, only the CMSIS-OS wrapper has to be

changed in this case.

http://www.freertos.org/a00114.html

FreeRTOS - Main features
• Preemptive or cooperative real-time kernel

• Tiny memory footprint (less than 10kB ROM) and easy scalable

• Includes a tickless mode for low power applications

• Synchronization and inter-task communication using

• message queues

• binary and counting semaphores

• mutexes

• group events (flags)

• Software timers for tasks scheduling

• Execution trace functionality

• CMSIS-RTOS API port

FreeRTOS - resources used
Core resources:

• System timer (SysTick) – generate system time (time slice)

• Two stack pointers: MSP, PSP

Interrupt vectors:
• SVC – system service call (like SWI in ARM7)

• PendSV – pended system call (switching context)

• SysTick – System Timer

Flash memory:
• 6-10kB

RAM memory:
• ~0.5kB + task stacks:

System Service Call (SVC)

• SVC – system service call / supervisor call

• It is an instruction and an exception. Once the svc instruction is executed, SVD

IRQ is triggered immediately (unless there is higher priority IRQ active)

• SVC contains an 8bit immediate value what could help to determine which OS

service is requested.

• Do not use SVC inside NMI or Hard Fault handler

Pended System Call (PendSV)

• PendSV is a priority programmable exception triggered by SW (write to the in

ICSR register @0xE000ED04)

SCB->ICSR |= (1<<28)

• It is not precise (in contrary to SVC). After set a pending bit CPU can execute a

number of instructions before the exception will start. Usually it is used like a

subroutine called i.e. by the system timer in OS

System timer

• It is necessary to trigger a context switching in regular time slots.

• In CortexM architecture 24bit downcounting SysTick is used for this purpose (it can

be changed – more details in Tickless mode section)

• System timer is triggering PendSV SW interrupt to perform context switch.

• In case we are using HAL library it is strongly recommended to change its

TimeBase timer from Systick to other timer available (i.e. TIM6)

FreeRTOS sources file structure
File / header

Directory

role

croutine.c / croutine.h

.\Source

.\Source\include

Co-routines functions definitions. Efficient in 8 and 16bit architecture. In 32bit architecture usage of tasks is suggested

event_groups.c / event_groups.h

.\Source

.\Source\include

heap_x.c

.\Source\portable\MemMang

Memory management functions (allocate and free memory segment, three different approaches in heap_1, heap_2, heap_3 and heap_4

files)

list.c / list.h

.\Source

.\Source\include

List implementation used by the scheduler.

port.c / portmacro.h

.\Source\portable\xxx\yyy

Low level functions supporting SysTick timer, context switch, interrupt management on low hw level – strongly depends on the platform

(core and sw toolset). Mostly written in assembly. In portmacro.h file there are definitions of portTickType and portBASE_TYPE

queue.c / queue.h / semphr.h

.\Source

.\Source\include

Semaphores, mutexes functions definitions

tasks.c / task.h

.\Source

.\Source\include

Task functions and utilities definition

timers.c / timers.h

.\Source

.\Source\include

Software timers funcitons definitions

FreeRTOS.h

.\Source\include

Configuration file which collect whole FreeRTOS sources

FreeRTOSConfig.h Configuration of FreeRTOS system, system clock and irq parameters configuration

FreeRTOS sources file structure
File / header

Directory

role

heap_x.c

.\Source\portable\MemMang

Memory management functions (allocate and free memory segment, three different approaches in heap_1, heap_2, heap_3 and heap_4

files)

list.c / list.h

.\Source

.\Source\include

List implementation used by the scheduler.

port.c / portmacro.h

.\Source\portable\xxx\yyy

Low level functions supporting SysTick timer, context switch, interrupt management on low hw level – strongly depends on the platform

(core and sw toolset). Mostly written in assembly. In portmacro.h file there are definitions of portTickType and portBASE_TYPE

queue.c / queue.h / semphr.h

.\Source

.\Source\include

Semaphores, mutexes functions definitions

tasks.c / task.h

.\Source

.\Source\include

Task functions and utilities definition

FreeRTOS.h

.\Source\include

Configuration file which collect whole FreeRTOS sources

FreeRTOSConfig.h Configuration of FreeRTOS system, system clock and irq parameters configuration

FreeRTOS

native API

FreeRTOS API conventions

• Prefixes at variable names:
c – char

s – short

l – long

x – portBASE_TYPE defined in portmacro.h for each platform (in STM32 it is long)

u – unsigned

p - pointer

• Functions name structure (vTaskPrioritySet() is taken as example):

v – void

x – returns portBASE_TYPE

prv – private

prefixprefix file namefile name function namefunction name

PrioritySetTaskv

FreeRTOS API conventions - macros

• Prefixes at macros defines their definition location:

• port – (ie. portMAX_DELAY) -> portable.h

• task – (ie. task_ENTER_CRITICAL) -> task.h

• pd – (ie. pdTRUE) -> projdefs.h

• config – (ie. configUSE_PREEMPTION) -> FreeRTOSConfig.h

• err – (ie. errQUEUE_FULL) -> projdefs.h

• Common macro definitions:

• pdTRUE 1

• pdFALSE 0

• pdPASS 1

• pdFAIL 0

FreeRTOS

CMSIS_OS API

FreeRTOS
CMSIS-OS API

• CMSIS-OS API is a generic RTOS interface for Cortex-M processor based devices

• Middleware components using the CMSIS-OS API are RTOS independent, this allows an easy linking to any

third-party RTOS

• The CMSIS-OS API defines a minimum feature set including

• Thread Management

• Kernel control

• Semaphore management

• Message queue and mail queue

• Memory management

• The STM32Cube comes with an implementation of the CMSIS-RTOS for FreeRTOS.

• For detailed documentation regarding CMSIS-OS refer to:

http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html

http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html

FreeRTOS
CMSIS-OS FreeRTOS implementation

• Implementation in file cmsis-os.c (found in folder:

\Middlewares\Third_Party\FreeRTOS\Source\CMSIS_RTOS)

• The following table lists examples of the CMSIS-RTOS APIs and the FreeRTOS APIs used to implement

them

API category CMSIS_RTOS API FreeRTOS API

Kernel control osKernelStart vTaskStartScheduler

Thread management osThreadCreate xTaskCreate

Semaphore osSemaphoreCreate vSemaphoreCreateBinary

xSemaphoreCreateCounting

Mutex osMutexWait xSemaphoreTake

Message queue osMessagePut xQueueSend

xQueueSendFromISR

Timer osTimerCreate xTimerCreate

• Note: CMSIS-OS implements same model as FreeRTOS for task states

FreeRTOS
CMSIS-OS API, main data structures

• Most of the functions returns osStatus value, which allows to check whether the function is

completed or there was some issue (cmsis_os.h file)

• Each OS component has its own ID:

• Tasks: osThreadId (mapped to TaskHandle_t within FreeRTOS API)

• Queues: osMessageQId (mapped to QueueHandle_t within FreeRTOS API)

• Semaphores: osSemaphoreId (mapped to SemaphoreHandle_t within FreeRTOS API)

• Mutexes: osMutexId (mapped to SemaphoreHandle_t within FreeRTOS API)

• SW timers: osTimerId (mapped to TimerHandle_t within FreeRTOS API)

• Delays and timeouts are given in ms:

• 0 – no delay

• >0 – delay in ms

• 0xFFFFFFFF – wait forever (defined in osWaitForever within cmsis_os.h file)

CMSIS_OS API
return values osStatus 1/2

• Most of the functions returns osStatus value, below you can find return values on function

completed list (cmsis_os.h file)

osStatus value description

osOK 0 no error or event occurred

osEventSignal 8 signal event occurred

osEventMessage 0x10 message event occurred

osEventMail 0x20 mail event occurred

osEventTimeout 0x40 timeout occurred

os_status_reserved 0x7FFFFFFF prevent from enum down-size compiler optimization

CMSIS_OS API
return values osStatus 2/2

• Error status values osStatus (cmsis_os.h)
osStatus

value

description

osErrorParameter

0x80
parameter error: a mandatory parameter was missing or specified an incorrect object.

osErrorResource

0x81
resource not available: a specified resource was not available

osErrorTimeoutResource

0xC1
resource not available within given time: a specified resource was not available within the

timeout period.

osErrorISR

0x82
not allowed in ISR context: the function cannot be called from interrupt service routines

osErrorISRRecursive

0x83
function called multiple times from ISR with same object.

osErrorPriority

0x84
system cannot determine priority or thread has illegal priority

osErrorNoMemory

0x85
system is out of memory: it was impossible to allocate or reserve memory for the operation

osErrorValue

0x86
value of a parameter is out of range.

osErrorOS

0xFF
unspecified RTOS error: run-time error but no other error message fits.

FreeRTOS

and STM32CubeMX

FreeRTOS in STM32CubeMX
changing Timebase source for HAL

• Start a new project within STM32CubeMX for selected MCU (or open already prepared existing one

– important is to have printf() implementation).

• Go to System Core section -> SYS and change Timebase source (for HAL) from SysTick to other

timer i.e. TIM6

FreeRTOS in STM32CubeMX
adding FreeRTOS middleware

• Go to Pinout&Configuration tab, select CategoriesMiddleWare->FreeRTOS and check Enabled

box in Mode window

• Go to Configuration tab to configure FreeRTOS

parameters – refer to next slides for details

FreeRTOS configuration
STM32CubeMX

1

2 3

FreeRTOS configuration in STM32CubeMX

• Config parameters tab

• Kernel settings

• RTOS components settings

• Memory setup

• Include parameters tab

• Include some additional functions,

not necessary for FreeRTOS run

• Tasks and Queues tab

• Creation of tasks and queues

• Timers and Semaphores tab

• Creation of timers and semaphores (binary, counting)

• Mutexes tab

• Creation of mutexes

FreeRTOS

configuration

FreeRTOS
Configuration options

• Configuration options are declared in file FreeRTOSConfig.h

• Important configuration options are:

Config option Description

configUSE_PREEMPTION Enables Preemption

configCPU_CLOCK_HZ CPU clock frequency in Hz

configTICK_RATE_HZ Tick rate in Hz

configMAX_PRIORITIES Maximum task priority

configTOTAL_HEAP_SIZE Total heap size for dynamic allocation

configLIBRARY_LOWEST_INTERRUPT_PRIORITY Lowest interrupt priority (0xF when using 4 cortex preemption bits)

configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY Highest thread safe interrupt priority (higher priorities are lower numeric value)

Kernel settings
• Use preemption

• If enabled use pre-emptive scheduling

• If disabled use co-operative scheduling

Task1

Priority level

High priority

Low priority

time

Create Task2 Task1 suspended

Task2Task2

Task1

Priority level

High priority

Low priority

time

Create Task2 Task2 suspended

Task1

Task2Task2

FreeRTOS memory management

HEAP

Heap (1/6)

• FreeRTOS uses a region of memory called Heap (into the RAM) to allocate memory for tasks, queues, timers , semaphores,

mutexes and when dynamically creating variables. FreeRTOS heap is different than the system heap defined at the compiler

level.

• When FreeRTOS requires RAM instead of calling the standard malloc it calls PvPortMalloc(). When it needs to free

memory it calls PvPortFree() instead of the standard free().

• FreeRTOS offers several heap management schemes that range in complexity and features. It includes five sample memory

allocation implementations, each of which are described in the following link :

• http://www.freertos.org/a00111.html

• The total amount of available heap space is set by configTOTAL_HEAP_SIZE which is defined in FreeRTOSConfig.h.

• The xPortGetFreeHeapSize() API function returns the total amount of heap space that remains unallocated (allowing

the configTOTAL_HEAP_SIZE setting to be optimized). The total amount of heap space that remains unallocated is also

available with xFreeBytesRemaining variable for heap management schemes 2 to 5.

http://www.freertos.org/a00111.html

Heap (2/6)
• Each created task (including the idle task) requires a Task Control Block (TCB) and a stack that are allocated

in the heap.

• The TCB size in bytes depends of the options enabled in the FreeRTOSConfig.h.

• With minimum configuration the TCB size is 24 words i.e 96 bytes.

• if configUSE_TASK_NOTIFICATIONS enabled add 8 bytes (2 words)

• if configUSE_TRACE_FACILITY enabled add 8 bytes (2 words)

• if configUSE_MUTEXES enabled add 8 bytes (2 words).

• The task stack size is passed as argument when creating at task. The task stack size is defined in words of 32

bits not in bytes.

• osThreadDef(Task_A, Task_A_Function, osPriorityNormal, 0, stacksize);

• FreeRTOS requires to allocate in the heap for each task :

• number of bytes = TCB_size + (4 x task stack size)

• configMINIMAL_STACK_SIZE defines the minimum stack size that can be used in words. the idle task stack

size takes automatically this value

Heap (3/6)
• The necessary task stack size can be fine-tuned using the API
uxTaskGetStackHighWaterMark() as follow:

• Use an initial large stack size allowing the task to run without issue (example 4KB)

• The API uxTaskGetStackHighWaterMark() returns the minimum number of free bytes (ever encountered) in the task

stack. Monitor the return of this function within the task.

• Calculate the new stack size as the initial stack size minus the minimum stack free bytes.

• The method requires that the task has been running enough to enter the worst path (in term of stack consumption).

Idle Task Task A

configTOTAL_HEAP_SIZE

TCBTCB
Idle task

Stack

Idle task

Stack
TCB

Task A

stack
TCB Task B stack

Task B

Free

space

configMINIMAL_STACK_SIZE Task A stack size Task B stack size

Heap (4/6)

• FreeRTOS requires to allocate in the heap for each message queue:

• number of bytes = 76 + queue_storage_area.

• queue_storage_area (in bytes) = (element_size * nb_elements) + 16

• When Timers are enabled (configUSE_TIMERS enabled) , the scheduler creates automatically

the timers service task (daemon) when started. The timers service task is used to control and

monitor (internally) all timers that the user will create. The timers task parameters are set through

the fowling defines :

• configTIMER_TASK_PRIORITY : priority of the timers task

• configTIMER_TASK_STACK_DEPTH : timers task stack size (in words)

• The scheduler also creates automatically a message queue used to send commands to the timers

task (timer start, timer stop ...)

Heap (5/6)

• The number of elements of this queue (number of messages that can be hold) are configurable

through the define:

• configTIMER_QUEUE_LENGTH.

• FreeRTOS requires to allocate in the heap for timers (in bytes):

• Timers Daemon Task (in bytes) :

• TCB_size + (4 x configTIMER_TASK_STACK_DEPTH)

• Timers message queue : number of bytes = 76 + queue_storage_area

• With queue_storage_area = (12 * configTIMER_QUEUE_LENGTH) + 16

• For each timer created by the user (by calling osTimerCreate()) needs 48 bytes

• To save heap size (i.e RAM footprint) it is recommended to disable the define

“configUSE_TIMERS” when timers are not used by the application

Heap (6/6)

• Each semaphore declared by the user application requires 88 bytes to be allocated in the heap.

• Each mutex declared by the user application requires 88 bytes to be allocated in the heap.

• To save heap size (i.e RAM footprint) it is recommended to disable the define

configUSE_MUTEXES when mutexes are not used by the application (task TCB static size being

reduced)

How to reduce RAM footprint (1/2)

• Optimize stack allocation for each task :

• uxTaskGetStackHighWaterMark(). This API returns the minimum number of free bytes (ever encountered) in the task

stack

• vApplicationStackOverflowHook(). This API is a stack overflow callback called when a stack overflow is detected

(available when activating the define configCHECK_FOR_STACK_OVERFLOW)

• Adjust heap dimensioning :

• xPortGetFreeHeapSize(). API that returns the total amount of heap space that remains unallocated. Must be used after

created all tasks, message queues, semaphores, mutexes in order to check the heap consumption and eventually re-adjust the

application define ” configTOTAL_HEAP_SIZE”.

• The total amount of heap space that remains unallocated is also available with xFreeBytesRemaining variable for heap

management schemes 2 to 5

• If heap_1.c, heap_2.c, heap_4.c or heap_5.c are being used, and nothing in your application is ever calling

malloc() directly (as opposed to pvPortMalloc()), then ensure the linker is not allocated a heap to the C library, it

will never get used.

How to reduce RAM footprint (2/2)

• Recover and minimize the stack used by main and rationalize the number of tasks.

• If the application doesn’t use any software timers then disable the define configUSE_TIMERS.

• If the application doesn’t use any mutexe then disable the define configUSE_MUTEXES.

• configMAX_PRIORITIES defines the number of priorities available to the application tasks. Any number of

tasks can share the same priority. Each available priority consumes RAM within the RTOS kernel so this value

should not be set any higher than actually required by the application. It is recommended to declare tasks with

contiguous priority levels: 1, 2, 3, 4, etc… rather than 10, 20, 30, 40, etc. The scheduler actually allocates

statically the ready task list of size configMAX_PRIORITIES * list entry structure : so high value of

configMAX_PRIORITIES shall be avoided to reduce RAM footprints

FreeRTOS

Memory allocation

FreeRTOS
Dynamic memory management

• FreeRTOS manages own heap for:
• Tasks

• Queues

• Semaphores

• Mutexes

• Dynamic memory allocation

• It is possible to select type of memory allocation

Total heap size for

FreeRTOS

How is memory allocated

and dealocated

FreeRTOS in STM32
memory management (except Heap_3.c model)

STACK (for main

application and IRQs)

STACK (for main

application and IRQs)

Data memory

start

end

HEAP (for main

application)

HEAP (for main

application)

HEAP (for FreeRTOS)

TASK A TASK A

TASK B TASK B

QUEUE 1 QUEUE 1

TCB (Task Control

Block) ~88B

TCB (Task Control

Block) ~88B

Stack of the Task AStack of the Task A

Queue control block

~84B

Queue control block

~84B

Queue storage areaQueue storage area

free memory

FreeRTOS in STM32
memory management (Heap_3.c model)

STACK (for main

application and IRQs)

STACK (for main

application and IRQs)

Data memory

start

end

HEAP (for main

application and

FreeRTOS)

TASK A TASK A

TASK B TASK B

QUEUE 1 QUEUE 1

TCB (Task Control

Block) ~88B

TCB (Task Control

Block) ~88B

Stack of the Task AStack of the Task A

Queue control block

~84B

Queue control block

~84B

Queue storage areaQueue storage area

free memory

HeapHeap

FreeRTOS
Dynamic memory management

• Heap_1.c
• Uses first fit algorithm to allocate memory. Simplest allocation method (deterministic), but does

not allow freeing of allocated memory => could be interesting when no memory freeing is

necessary

HeapHeap

Allocated

block 2

Allocated

block 1

Allocated

block 3

pvPortMallocpvPortMalloc

pvPortMallocpvPortMalloc

pvPortMallocpvPortMalloc

vPortFreevPortFree

vPortFreevPortFree

vPortFreevPortFree

Is not possible to return

memory to heap

HeapHeap

FreeRTOS
Dynamic memory management

• Heap_2.c
• Not recommended to new projects. Kept due to backward compatibility.

• Implements the best fit algorithm for allocation

• Allows memory free() operation but doesn’t combine adjacent free blocks

=> risk of fragmentation

HeapHeap

Allocated

block 2

Allocated

block 1

Allocated

block 3

pvPortMallocpvPortMalloc

pvPortMallocpvPortMalloc

pvPortMallocpvPortMalloc

vPortFreevPortFree

vPortFreevPortFree

HeapHeap

Heap 2

Allocated

block 1

Heap 3

vPortFreevPortFree

HeapHeap

Heap 2

Heap 4

Heap 3

Free blocks are not

combined together

HeapHeap

FreeRTOS
Dynamic memory management

• Heap_3.c
• Implements simple wrapper for standard C library malloc() and free(); wrapper makes these

functions thread safe, but makes code increase and not deterministic

• It uses linker heap region.

• configTOTAL_HEAP_SIZE setting has no effect when this model is used.

HeapHeap

Allocated

block 2

Allocated

block 1

Allocated

block 3

mallocmalloc

mallocmalloc

mallocmalloc

freefree

freefree

HeapHeap

Heap 2

Allocated

block 1

Heap 3

freefree

HeapHeap

Heap 2

Heap 4

Heap 3

Use C functions for allocation

(linker must be modified)

HeapHeap

FreeRTOS
Dynamic memory management

• Heap_4.c (1/2)
• Uses first fit algorithm to allocate memory. It is able to combine adjacent free memory blocks

into a single block

=> this model is used in STM32Cube examples

HeapHeap

Allocated

block 2

Allocated

block 1

Allocated

block 3

pvPortMallocpvPortMalloc

pvPortMallocpvPortMalloc

pvPortMallocpvPortMalloc

vPortFreevPortFree

vPortFreevPortFree

Heap 1Heap 1

Heap 2Heap 2

Allocated

block 1
vPortFreevPortFree

HeapHeap

combine together free

memory

FreeRTOS
Dynamic memory management

• Heap_4.c (2/2) – place the heap in specific location

• The memory array used by heap_4 is declared within heap_4.c file and its start address is

configured by the linker automatically.

• To use your own declaration configAPPLICATION_ALLOCATED_HEAP must be set to 1 (within

FreeRTOSConfig.h file) and the array must be declared within user code with selected start
address and size specified by configTOTAL_HEAP_SIZE.

• Memory array used by heap_4 is specified as:

uint8_t ucHeap[configTOTAL_HEAP_SIZE];

FreeRTOS
Dynamic memory management

• Using heap_4.c : heap is organized as a linked list: for better efficiency when

dynamically allocating/Freeing memory.

• As consequence when allocating “N” bytes in the heap memory using

“pvPortMalloc” API it consumes:
• Sizeof (BlockLink_t) (structure of the heap linked list) : 8 bytes.

• Data to be allocated itself : N bytes.

• Add padding to total allocated size (N + 8) to be 8 bytes aligned :

• Example if trying to allocate 52 Bytes : it consumes from the heap : 52 + 8 = 60 bytes aligned to 8 bytes it gives 64

bytes consumed from the heap.

configTOTAL_HEAP_SIZE

Block_Linkt

(8 bytes)

Block_Linkt

(8 bytes)

Data Allocation

space

(N bytes)

Data Allocation

space

(N bytes)

pvPortMalloc(N);

Padding for

8 bytes

alignment

Padding for

8 bytes

alignment

FreeRTOS
Dynamic memory management

• Heap_5.c (1/2)
• Fit algorithm able to combine adjacent free memory blocks into a single block using the same

algorithms like in heap_4, but supporting different memory regions (i.e. SRAM1, SRAM2) being

not in linear memory space

• It is the only memory allocation scheme that must be explicitly initialized before any OS object

cab be created (before first call of pvPortMalloc()).

• To inialize this scheme vPortDefineHeapRegions() function should be called.

• It specifies start address and size od each separate memory area.

• An example for STM32L476 device with SRAM1 and SRAM2 areas is on the next slide

FreeRTOS
Dynamic memory management

• Heap_5.c (2/2)
• An example for STM32L476 device with SRAM1 and SRAM2 areas.:

#define SRAM1_OS_START (uint8_t *)0x2000 1000

#define SRAM1_OS_SIZE 0x0800 //2kB

#define SRAM2_OS_START (uint8_t *)0x1000 0000

#define SRAM2_OS_SIZE 0x1000 //4kB

Const HeapRegion_t xHeapRegions[] =

{

{SRAM2_OS_START, SRAM2_OS_SIZE},

{SRAM1_OS_START, SRAM1_OS_SIZE},

{NULL,0} /*terminates the array*/

}

/*before call of any OS create function*/

vPortDefineHeapRegions(HeapRegions);

#define SRAM1_OS_START (uint8_t *)0x2000 1000

#define SRAM1_OS_SIZE 0x0800 //2kB

#define SRAM2_OS_START (uint8_t *)0x1000 0000

#define SRAM2_OS_SIZE 0x1000 //4kB

Const HeapRegion_t xHeapRegions[] =

{

{SRAM2_OS_START, SRAM2_OS_SIZE},

{SRAM1_OS_START, SRAM1_OS_SIZE},

{NULL,0} /*terminates the array*/

}

/*before call of any OS create function*/

vPortDefineHeapRegions(HeapRegions);

SRAM1

SRAM2

0x1000 0000

0x2000 0000

0x1000 8000

Heap

Heap

Lower address appears in the array first.

Manual memory allocation

• There is an option to use alternative functions for memory management, however it

is not recommended (inefficient) way of operation

void StartTask1(void const * argument)
{
/* USER CODE BEGIN 5 */
osPoolDef(Memory,0x100,uint8_t);
PoolHandle = osPoolCreate(osPool(Memory));
uint8_t* buffer=osPoolAlloc(PoolHandle);
/* Infinite loop */
for(;;)
{
osDelay(5000);

}
/* USER CODE END 5 */

}

/* Private variables ---*/
osThreadId Task1Handle;
osPoolId PoolHandle;

Allocate memory from pool

Create memory pool

FreeRTOS

Scheduler

Multitasking 1/3

• Cooperative multitasking

• Requires cooperation of all tasks

• Context gets switched ONLY when RUNNING task

• goes to BLOCKED state (i.e. by call osDelay() function) or

• goes to READY state (i.e. by call osThreadYield() function) or

• is put into SUSPEND mode by the system (other task)

• Tasks are not preempted with higher priority tasks

• No time slice preemption as well

• It requires the following setting in FreeRTOSConfig.h:

• #define configUSE_PREEMPTION 0

Multitasking 2/3

• Preemptive multitasking (default in FreeRTOS)

• Tasks with the same priority share CPU time

• Context gets switched when:

• Time slice has passed

• Task with higher priority has come

• Task goes to BLOCKED state (i.e. by call osDelay() function)

• Task goes to READY state (i.e. by call osThreadYield() function)

• It requires the following setting in FreeRTOSConfig.h:

• #define configUSE_PREEMPTION 1

Multitasking 3/3

• Cooperative with preemption by IRQ multitasking

• IRQs are used to trigger context switch

• Preemptive system without time slice

• It requires the following setting in FreeRTOSConfig.h:

• #define configUSE_PREEMPTION 0

Scheduling 1/2

• The scheduler is an algorithm determining which task to execute.

• Common point between schedulers is that they distinguish between tasks being ready to be executed (in
READY state) and those being suspended for any reason (delay, waiting for mailbox, waiting for
semaphore(s),…)

• The main difference between schedulers is how they distribute CPU time between the tasks in READY state.

Scheduling 2/2

• In FreeRTOS round-robin scheduling algorithm is implemented:

• Round-robin can be used with either preemptive or cooperative multitasking (configUSE_PREEMPTION in
FreeRTOSConfig.h).

• It works well if response time is not an issue or all tasks have same priority.

• The possession of the CPU changes periodically after a predefined execution time called timeslice*
(configTICK_RATE_HZ in FreeRTOSConfig.h)

*An exception to this rule are critical sections

FreeRTOS – interrupts and

connection to hardware

FreeRTOS OS interrupts

• PendSV interrupt

• Used for task switching before tick rate

• Lowest NVIC interrupt priority

• Not triggered by any peripheral

• SVC interrupt

• Interrupt risen by SVC instruction

• SVC 0 call used only once, to start the scheduler (within

vPortStartFirstTask() which is used to start the kernel)

• SysTick timer

• Lowest NVIC interrupt priority

• Used for task switching on configTICK_RATE_HZ regular

timebase

• Set PendSV if context switch is necessary

Task1

Priority level

High priority

Low priority

time

Task2Task2

PendSV

SysTick

SVC

Other IRQs

Task1

vPortStartFirstTask(

Task2Task2

NVIC configuration

Kernel(PendSV, SysTick)Kernel(PendSV, SysTick)

RTOS IRQRTOS IRQ

Non-RTOS

IRQ

Non-RTOS

IRQ

configMAX_SYSCALL_INTERRUPT_PRIORITY

configKERNEL_INTERRUPT_PRIORITY255

254

191

0

Those interrupts can execute API functions

dedicated for interrupts, like QueueGiveFromISR();

Those interrupts can not execute API functions

STM32 priority

• FreeRTOS kernel and its irq procedures (PendSV, SysTick) have lowest possible interrupt priority (255) set in

FreeRTOSConfig.h (configKERNEL_INTERRUPT_PRIORITY)

• There is a group of interrupts which can cooperate with FreeRTOS API by calling its functions. Maximum level for those

peripherals (based on the position in vector table) is set in configMAX_SYSCALL_INTERRUPT_PRIORITY

• It is possible to use nested interrupts.

API functions in IRQ procedures

• Within FreeRTOS API there are dedicated functions to be executed within
IRQ procedures. All of those functions has FromISR suffix in its names,
like i.e.:

xSemaphoreGiveFromISR(semaphore, *hp_task)

vs

xSemaphoreGive (semaphore)

• The only difference for the programmer is additional argument *hp_task. It
is a pointer to the variable which is used to indicate whether operation on
queue or semaphore within IRQ causes unblocking of the task with higher
priority than currently running. If this parameter is pdTRUE, context switch
(PendSV irq) should be requested by kernel before the interrupt exits.

• When using CMSIS API, this process is automatically handled by the
library (by checking IPSR content) and is transparent for the programmer,
i.e.:

osSemaphoreRelease(semaphore)

time

AADD

o
s
D

e
la

y
()

AA
Tasks

SVC

PendSV

SysTick

IRQ1

NVIC priority

pdTRUE

Example: Task A has been interrupted

by IRQ1. During an interrupt, Task D

with higher priority was unblocked, thus

it will be executed once IRQ will finish

API functions in IRQ procedures
list of the functions which could be run from IRQ procedure

Function name (CMSIS_OS API) Function name (FreeRTOS API)

osKernelSysTick() xTaskGetTickCountFromISR()

osThreadResume() xTaskResumeFromISR()

osThreadGetPriority() uxTaskPriorityGetFromISR()

osSignalSet xTaskGenericNotifyFromISR()

osMessagePut(),

osMailPut()

xQueueSendFromISR()

osMessageGet(),

osMailGet()

xQueueReceiveFromISR()

osMessageWaiting() uxQueueMessagesWaitingFromISR()

osMutexWait(),

osSemaphoreWait()

xSemaphoreTakeFromISR()

osMutexRelease(),

osSemaphoreRelease()

xSemaphoreGiveFromISR()

osTimerStart() xTimerChangePeriodFromISR()

osTimerStop() xTimerStopFromISR()

FreeRTOS – boot sequence & timing

HW dependent:
• Configure the CPU clocks

• Initialize static and global variables that contain only the value zero (bss)

• Initialize variables that contain a value other than zero

• Perform any other hardware set up required

FreeRTOS related *)
• Create application queues, semaphores and mutexes (~500 CPU cycles/object)

• Create application tasks (~1100 CPU cycles/task)

• Start the RTOS scheduler (~1200 CPU cycles)
The RTOS scheduler is started by calling vTaskStartScheduler(). The start up process includes configuring the tick
interrupt, creating the idle task, and then restoring the context of the first task to run

ti
m

e

*) calculations based on ARM CortexM3 device, using ARM RVDS compiler with low optimization level (1)

Source: FreeRTOS FAQ – Memory Usage, Boot Time & Context Switch Times on www.freertos.org web page

http://www.freertos.org/

Idle task code

• Idle task code is generated automatically when the scheduler is started

• It is portTASK_FUNCTION() function within task.c file

• It is performing the following operations (in endless loop):

• Check for deleted tasks to clean the memory

• taskYIELD() if we are not using preemption (configUSE_PREEMPTION=0)

• Get yield if there is another task waiting and we set configIDLE_SHOULD_YIELD=1

• Executes vApplicationIdleHook() if configUSE_IDLE_HOOK=1

• Perform low power entrance if configUSE_TICKLESS_IDLE!=0) -> let’s look closer on this

FreeRTOS start
step by step 1/2

• FreeRTOS is started by osKernelStart() function (main.c file) from CMSIS_OS API

• It is calling vTaskStartScheduler() function (cmsis_os.c file) from FreeRTOS API

• It is creating an IDLE task (xTaskCreate()), then disable all interrupts

(portDISABLE_INTERRUPTS()) to be sure that no tick will happened before or during call to

xPortStartScheduler() function (task.c file)

• xPortStartScheduler() function (port.c file) is configuring lowest priority level for SysTick and

PendSV interrupts, then it is starting the timer that generates the tick (in CortexM architecture usually

it is SysTick), enables FPU if present (CortexM4) and starts the first task using
prvPortStartFirstTask() function

FreeRTOS start
step by step 2/2

• prvPortStartFirstTask() function (port.c file, usually written in assembler) locates the stack

and set MSP (used by the OS) to the start of the stack, then enables all interrupts. After this triggers

software interrupt SVC

• As a result of SVC interrupt vPortSVCHandler() is called (port.c file)

• vPortSVCHandler() function (port.c file) restores the context, loads TCB (Task Control Block)

for the first task (highest priority) form ready list and starts executing this task

FreeRTOS – lists management
name Description conditions

ReadyTasksLists[0]

…

ReadyTasksList[configMAX_PRIORITIES]

Prioritized ready tasks lists separate for each task priority

(up to configMAX_PRIORITIES

Value stored in FreeRTOSConfig.h)

configMAX_PRIORITIES

TasksWaitingTermination List of tasks which have been deleted but their memory

pools are not freed yet.

INCLUDE_vTaskDelete == 1

SuspendedTaskList List of tasks currently suspended INCLUDE_vTaskSuspend == 1

PendingReadyTaskList Lists of tasks that have been read while the scheduler was

suspended

-

DelayedTaskList List of delayed tasks -

OverflowDelayedTaskList List of delayed tasks which have overflowed the current tick

count

-

There is no dedicated list for task in Running mode (as we have only one task in this

state at the moment), but the currently run task ID is stored in variable pxCurrentTCB

API - Operations on scheduler
• Start the scheduler
osKernelStart()

• Set priorities for PendSV and SysTick IRQs (minimum possible)

• Starts kernel of the FreeRTOS (by executing SVC procedure)

• IDLE task is created automatically
(with handler or without it if INCLUDE_xTaskGetIdleTaskHandle is not defined)

• There could be another thread creation done.

• Stop the scheduler -> not implemented in STM32 (function vTaskEndScheduler() is empty)

• Check if the RTOS kernel is already started
osKernelRunning()

• Return values:
0 – RTOS is not started,
1 – RTOS already started,

-1 this feature is disabled in FreeRTOS configuration (INCLUDE_xTaskGetSchedulerState)

• Get the value of the Kernel SysTick timer
osKernelSysTick()

• Returns value of the SysTick timer (uint32)

FreeRTOS

Tasks

What is Task?
• It is C function:

FirstTask(void const * argument)

• It should be run within infinite loop, like:

for(;;)

{

/* Task code */

}

• It can be used to generate any number of tasks (separate instances)

• It has its own part of stack (each instance), and priority

• It can be in one of 4 states (RUNNING, BLOCKED, SUSPENDED, READY)

• It is created and deleted by calling API functions of the CMSIS_OS (osThreadCreate()
and osThreadDelete())

Task structure

• A task consists of three parts:
• The program code (ROM)

• A stack, residing in a RAM area that can be accessed by the stack pointer (The stack has the same
function as in a single-task system: storage of return addresses of function calls, parameters and local
variables, and temporary storage of intermediate calculation results and register values.

• TCB - task control block (data structure assigned to a task when it is created. It contains status
information of the task, including the stack pointer, task priority, current task status)

• Two calls to pvPortMalloc()are made during task creation. First one allocates

TCB, second one allocates the task stack (it is taken from declared FreeRTOS

heap area).

• The process of saving the context of a task that is being suspended and restoring

the context of a task being resumed is called context switching.

Task Control Block (TCB)
Name Description condition

*pxTopOfStack Points to the location of the last item placed on the tasks stack.

THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT

xMPUSettings The MPU settings are defined as part of the port layer.

THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT

portUSING_MPU_WRAPPERS == 1

xGenericListItem The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended).

xEventListItem Used to reference a task from an event list

uxPriority The priority of the task. 0 is the lowest priority

*pxStack Points to the start of the stack

Task Name Descriptive name given to the task when created. Facilitates debugging only

*pxEndOfStack Points to the end of the stack on architectures where the stack grows up from low memory portSTACK_GROWTH > 0

uxCriticalNesting Holds the critical section nesting depth for ports that do not maintain their own count in the port layer portCRITICAL_NESTING_IN_TCB == 1

uxTCBNumber Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been

deleted and then recreated.

configUSE_TRACE_FACILITY == 1

uxTaskNumber Stores a number specifically for use by third party trace code configUSE_TRACE_FACILITY == 1

uxBasePriority The priority last assigned to the task - used by the priority inheritance mechanism configUSE_MUTEXES == 1

uxMutexesHeld configUSE_MUTEXES == 1

pxTaskTag configUSE_APPLICATION_TASK_TAG == 1

ulRunTimeCounter Stores the amount of time the task has spent in the Running state configGENERATE_RUN_TIME_STATS == 1

_reent xNewLib_reent Allocate a Newlib reent structure that is specific to this task.
Note Newlib support has been included by popular demand, but is not used by the FreeRTOS maintainers themselves.
FreeRTOS is not responsible for resulting newlib operation. User must be familiar with newlib and must provide

system-wide implementations of the necessary stubs.

configUSE_NEWLIB_REENTRANT == 1

Task Control Block (TCB)

Main fields within TCB (task.c file)

typedef struct tskTaskControlBlock

{

volatile StackType_t *pxTopOfStack; //Points to the location of the last item placed on the tasks stack

…

ListItem_t xStateListItem; //The list that the state list item of a task is reference from denotes

//the state of that task (Ready, Blocked, Suspended)

ListItem_t xEventListItem; //Used to reference a task from an event list

UBaseType_t uxPriority; //The priority of the task. 0 is the lowest priority

StackType_t *pxStack; //Points to the start of the stack

char pcTaskName[configMAX_TASK_NAME_LEN];//Descriptive name given to the task when created.

…

#if (configUSE_MUTEXES == 1)

UBaseType_t uxBasePriority; //The priority last assigned to the task – for priority inheritance

UBaseType_t uxMutexesHeld;

#endif

…

#if(configUSE_TASK_NOTIFICATIONS == 1)

volatile uint32_t ulNotifiedValue;

volatile uint8_t ucNotifyState;

#endif

…

} tskTCB;

typedef struct tskTaskControlBlock

{

volatile StackType_t *pxTopOfStack; //Points to the location of the last item placed on the tasks stack

…

ListItem_t xStateListItem; //The list that the state list item of a task is reference from denotes

//the state of that task (Ready, Blocked, Suspended)

ListItem_t xEventListItem; //Used to reference a task from an event list

UBaseType_t uxPriority; //The priority of the task. 0 is the lowest priority

StackType_t *pxStack; //Points to the start of the stack

char pcTaskName[configMAX_TASK_NAME_LEN];//Descriptive name given to the task when created.

…

#if (configUSE_MUTEXES == 1)

UBaseType_t uxBasePriority; //The priority last assigned to the task – for priority inheritance

UBaseType_t uxMutexesHeld;

#endif

…

#if(configUSE_TASK_NOTIFICATIONS == 1)

volatile uint32_t ulNotifiedValue;

volatile uint8_t ucNotifyState;

#endif

…

} tskTCB;

Task function example
void FirstTask(void const * argument)
{
/* task initialization */

for(;;)
{
/* Task code */
}

/* we should never be here */

}

Run once at first run of

each task instance

Run when task instance

is in RUN mode

Should be never

executed.

Task states

• Ready

• Task is ready to be executed but is not currently executing

because a different task with equal or higher priority is running

• Running

• Task is actually running (only one can be in this state at the

moment)

• Blocked

• Task is waiting for either a temporal or an external event

• Suspended

• Task not available for scheduling, but still being kept in

memory

SuspendedSuspended

ReadyReady

BlockedBlocked

RunningRunning

osThreadCreate

o
s
T
h
r
e
a
d
R
e
s
u
m
e

osDelay

osDelayUntil

Event

Scheduler

osThreadYield

Task states – CMSIS_OS
Tasks states are stored within osThreadState enum (cmsis_os.h file)

State name value comment

osThreadRunning 0 RUNNING

osThreadReady 1 READY

osThreadBlocked 2 BLOCKED

osThreadSuspended 3 SUSPEND

osThreadDeleted 4 Task has been deleted, but its TCB has not yet been freed

osThreadError 0x7FFFFFFF Error code

Task priorities

• Each task is assigned a priority from [tskIDLE_PRIORITY] (defined in task.h) to

[MAX_PRIORITIES – 1] (defined in FreeRTOSConfig.h)

• The order of execution of tasks depends on this priority

• The scheduler activates the task that has the highest priority of all tasks in the

READY state.

• Task with higher priority can preempt running task if configUSE_PREEMPTION (in

FreeRTOSConfig.h) is set to 1

• Task priorities can be changed during work of the application

lower number = lower prioritylower number = lower priority

Task priorities
CMSIS_OS

Tasks priorities can be set within osPriority enum (cmsis_os.h file)

Priority name value comment

osPriorityIdle -3 priority: idle (lowest)

osPriorityLow -2 priority: low

osPriorityBelowNormal -1 priority: below normal

osPriorityNormal 0 priority: normal (default)

osPriorityAboveNormal 1 priority: above normal

osPriorityHigh 2 priority: high

osPriorityRealtime 3 priority: realtime (highest)

osPriorityError 0x84 system cannot determine priority or thread has illegal priority

Context switching

Tasks

SVC

PendSV

SysTick

IRQ

time

NVIC priority

o
s

T
h

re
a

d
Y

ie
ld

()

AADD

o
s

D
e
la

y
()

Tasks

SVC

PendSV

SysTick

IRQ

time

NVIC priority

CC

PREEMPTIVE

COOPERATIVE

Set semaphore which unblocks

higher priority Task D

o
s

D
e
la

y
()

A -> READY

B -> RUN

C = READY

B -> BLOCKED

C -> RUN

A = READY

A -> READY

B -> RUN

C = READY

D = BLOCKED

B -> READY

C -> RUN

A = READY

D = BLOCKED

C -> READY

A -> RUN

B = READY

D = BLOCKED

A -> READY

D -> RUN

B,C = READY

D -> BLOCKED

A -> RUN

B,C = READY

BBAA CC AA

AA BB CC

A -> RUN

B,C = READY

D = BLOCKED

A = RUN

B,C = READY

B -> BLOCKED

C -> RUN

A = READY

Tasks priorities:

Idle 0

A,B,C 1

D 2

Tasks priorities:

Idle 0

A,B,C 1

o
s

T
h

re
a

d
Y

ie
ld

()

Context switching
list.h

Tasks are grouped within lists at List_t objects (list.h file)

Field name comment

listFIRST_LIST_INTEGRITY_CHECK_VALUE known test value – not used

UBaseType_t priority: low

ListItem_t * Used to walk through the list. Points to the last item returned by a call to

listGET_OWNER_OF_NEXT_ENTRY ()

MiniListItem_t List item that contains the maximum possible item value meaning it is

always at the end of the list and is therefore used as a marker.

listSECOND_LIST_INTEGRITY_CHECK_VALUE known test value – not used

Context switching
list.h

Tasks are grouped within lists at ListItem_t objects (list.h file)

Field name comment

listFIRST_LIST_INTEGRITY_CHECK_VALUE known test value – not used

TickType_t The value being listed. In most cases this is used to sort the list in descending

order.

ListItem_t * Pointer to the next ListItem_t in the list.

ListItem_t * Pointer to the previous ListItem_t in the list.

Void * Pointer to the object (normally a TCB) that contains the list item. There is

therefore a two way link between the object containing the list item and the list

item itself.

Void * Pointer to the list in which this list item is placed (if any).

listSECOND_LIST_INTEGRITY_CHECK_VALUE known test value – not used

Context switching
list.h

Tasks are grouped within lists at MiniListItem_t objects (list.h file)

Field name comment

listFIRST_LIST_INTEGRITY_CHECK_VALUE known test value – not used

TickType_t The value being listed. In most cases this is used to sort the list in

descending order.

ListItem_t * Pointer to the next ListItem_t in the list.

ListItem_t * Pointer to the previous ListItem_t in the list.

FreeRTOS – context switching
tick source - step by step

• Tick timer (CortexM architecture uses SysTick) interrupt causes execution of
xPortSysTickHandler() (port.c file)

• xPortSysTickHandler() (usually written in assembly):

• blocks all interrupts (as its own priority is the lowest possible) using
portDISABLE_INTERRUPTS() macro (portmacro.h file)

• Activates PendSV bit to run an interrupt what executes xPortPendSVHandler() function

(port.c file):

• Calls vTaskSwitchContext() function (task.c file), which is calling a macro

taskSELECT_HIGHEST_PRIORITY_TASK() (task.c file) to select the READY task on the

highest possible priority list.

• Unblocks all interrupts using portENABLE_INTERRUPT() macro (portmacro.h file)

FreeRTOS – context switch time (1/2)

• Context switch time depends on the port, compiler and configuration. A context switch time of 84

CPU cycles was obtained under the following test conditions:
• FreeRTOS ARM Cortex-M3 port for the Keil compiler

• Stack overflow checking turned off

• Trace features turned off

• Compiler set to optimization for speed

• configUSE_PORT_OPTIMISED_TASK_SELECTION set to 1 in FreeRTOSConfig.h

Remarks:
• Under these test conditions the context switch time is not dependent on whether a different task was selected to run or the same task was

selected to continue running.

• The ARM Cortex-M port performs all task context switches in the PendSV interrupt. The quoted time does not include interrupt entry time.

• The quoted time includes a short section of C code. It has been determined that 12 CPU cycles could have been saved by providing the entire

implementation in assembly code. It is considered that the benefit of maintaining a short section of generic C code (for reasons of maintenance,

support, robustness, automatic inclusion of features such as tracing, etc.) outweighs the benefit of removing 12 CPU cycles from the context

switch time.

• The Cortex-M CPU registers that are not automatically saved on interrupt entry can be saved with a single assembly instruction, then restored

again with a further single assembly instruction. These two instructions on their own consume 12 CPU cycles.

*) source: FreeRTOS FAQ – Memory Usage, Boot Time & Context Switch Times on www.freertos.org web page

http://www.freertos.org/a00110.html#configUSE_PORT_OPTIMISED_TASK_SELECTION
http://www.freertos.org/

FreeRTOS – context switch time (2/2)
• Context switch time can be much longer in CortexM4 and CortexM7 based devices with Floating

Point Unit due to necessity of stacking FPU registers (additional 17 32bit registers: S0-S15 and

FPSCR).

• Rest of FPU registers (S16-S31) should be handled by software

• Within PendSV handler there is a check done whether floating point unit instruction has been used

and based on this informaiton those registers are stacked/unstacked from/for current task or not:
/* Is the task using the FPU context?

If so, push high vfp registers. */

tst r14, #0x10

it eq

vstmdbeq r0!, {s16-s31}

• And then on PendSV exit after the task switch:
/* Is the task using the FPU context?

If so, pop the high vfp registers too. */

tst r14, #0x10

it eq

vldmiaeq r0!, {s16-s31}

• More information can be found in Application note 298 from ARM.

Context switching time
STM32CubeMX modifications

Within STM32CubeMX, pinout tab:

• Configure PB6, PB7 as GPIO_Output

• Configure PD0 as EVENTOUT

Re-generate the code and within the code please add some modifications:
1. To set both pins (PB6, PB7), please use GPIOB->ODR |= 0xC0;

2. To reset PB6, you can used GPIOB->ODR &= 0xFFBF;

3. To reset PB7, you can used GPIOB->ODR &= 0xFF7F;

4. To generate 1 sys clk long pulse on PD0 use sev (assembly code)

Put above lines in various places in the code to measure time intervals (on the next slide instruction 1)
has been placed within SysTick_Handler() in stm32L4xx_it.c, instruction 2 and 3 in empty for(;;)

loop within Task1 and Task2 accordingly (main.c file). Instruction 4 has been placed within
xPortPendSVHandler() function (port.c file) just before its jump to user task (line BX LR).

In case of issues with GPIOB declaration, please include stm32l4xx.h fileIn case of issues with GPIOB declaration, please include stm32l4xx.h file

Context switching time
Time between beginning of SysTick and user task code ~65us

4MHz sys clk4MHz sys clk

gccgcc

Context switching time
Time between beginning of beginning of PendSV code and user task code ~37us

4MHz sys clk4MHz sys clk

gccgcc

Context switching time
Time between beginning of SysTick and jump to user task within PendSV ~30us

4MHz sys clk4MHz sys clk

gccgcc

Context switching time
Time between jump to user task within PendSV and user task code ~5us

4MHz sys clk4MHz sys clk

gccgcc

Context switching time

Length of the pulse generated by __sev() ~250ns (1clk cycle @4MHz sys clk)

4MHz sys clk4MHz sys clk

gccgcc

PendSV interruptPendSV interrupt

Stack pointers
• Main stack pointer (MSP)

• Used in interrupts

• Allocated by linker during compiling

• Process stack pointer (PSP)
• Each task have own stack pointer

• During context switch the stack pointer is initialized for correct task

Task 1 Task 2

Stack – Task 1

Data

Stack – Task 1

Data

Non scratch

registers

Stack – Task 2

Data

Non scratch

registers

Stack – Task 2

Data

PSP MSP PSP

Dual stack

• There are two independent stack pointers in CortexM devices:
• Main Stack Pointer (MSP) – enabled by default.

• Process Stack Pointer (PSP) – could be enabled (bit 1 in CONTROL register)

• Both 32bit registers are visible as R13 register of the Core and only one can be

used at one time.

• Dual stack architecture is used for OS:
• MSP – OS kernel and exception handlers

• PSP – application tasks

Tasks API
• Create Task example

/* Create the thread(s) */
/* definition and creation of Task1 */

osThreadDef(Task1, StartTask1, osPriorityNormal, 0, 128);

Task1Handle = osThreadCreate(osThread(Task1), NULL);

Name used

for handler

Stack size

in bytes

Number of

instances

Priority of

the task
Name of

the function

const osThreadDef_t os_thread_def_Task1

&os_thread_def_Task1

(void *argument) to be

passed to task function

Return value:

• Task1Handle = NULL -> error (i.e. lack of heap memory to allocate the stack)

• Task1Handle != NULL -> task ID for reference by other functions

Tasks API
• Task handle definition:

• Create task

• Delete task

• Get task ID

osStatus osThreadTerminate (osThreadId thread_id)

osThreadId osThreadGetId (void)

osThreadId osThreadCreate (const osThreadDef_t *thread_def, void *argument)

/* Private variables --*/
osThreadId Task1Handle;

Tasks API
• Yield task

• Check if task is suspended

• Resume task

• Check state of task

• Suspend task

• Resume all tasks

• Suspend all tasks

osThreadState osThreadGetState(osThreadId thread_id)

osStatus osThreadIsSuspended(osThreadId thread_id)

osStatus osThreadSuspend (osThreadId thread_id)

osStatus osThreadResume (osThreadId thread_id)

osStatus osThreadSuspendAll (void)

osStatus osThreadResumeAll (void)

osStatus osThreadYield(void)

code Value description

osPriorityIdle -3 idle (lowest)

osPriorityLow -2 low

osPriorityBelowNormal -1 Below normal

osPriorityNormal 0 Normal (default)

osPriorityAboveNormal +1 Above normal

osPriorityHigh +2 high

osPriorityRealtime +3 Realtime (highest)

osPriorityError 0x84 system cannot determine priority or thread has illegal priority

CMSIS-RTOS API
Threads (Tasks) priorities - osPriority

Too high priority (above configMAX_PRIORITIES within FreeRTOSConfig.h)

will be set to max configured value configMAX_PRIORITIES

Too high priority (above configMAX_PRIORITIES within FreeRTOSConfig.h)

will be set to max configured value configMAX_PRIORITIES

CMSIS_OS API
return values osStatus 1/2

• Most of the functions returns osStatus value, below you can find return values on function completed list

(cmsis_os.h file)

osStatus value description

osOK 0 no error or event occurred

osEventSignal 8 signal event occurred

osEventMessage 0x10 message event occurred

osEventMail 0x20 mail event occurred

osEventTimeout 0x40 timeout occurred

os_status_reserved 0x7FFFFFFF prevent from enum down-size compiler optimization

CMSIS_OS API
return values osStatus 2/2• Error status values osStatus (cmsis_os.h)

osStatus

value

description

osErrorParameter

0x80
parameter error: a mandatory parameter was missing or specified an incorrect

object.

osErrorResource

0x81
resource not available: a specified resource was not available

osErrorTimeoutResource

0xC1
resource not available within given time: a specified resource was not available

within the timeout period.

osErrorISR

0x82
not allowed in ISR context: the function cannot be called from interrupt service

routines

osErrorISRRecursive

0x83
function called multiple times from ISR with same object.

osErrorPriority

0x84
system cannot determine priority or thread has illegal priority

osErrorNoMemory

0x85
system is out of memory: it was impossible to allocate or reserve memory for the

operation

osErrorValue

0x86
value of a parameter is out of range.

osErrorOS

0xFF
unspecified RTOS error: run-time error but no other error message fits.

Tasks lab
STM32CubeMX – adding tasks

Press FreeRTOS button within Pinout&Configuration tab

1

2

3

4

• We need to create 2 tasks:

• Task1:

• Priority: osPriorityNormal

• Stack Size: 128 Words

• Entry Function: StartTask1

• Code Generation: Default

• Parameter: NULL

• Allocation: Dynamic

• Task2:

• Priority: osPriorityNormal

• Stack Size: 128 Words

• Entry Function: StartTask2

• Code Generation: Default

• Parameter: NULL

• Allocation: Dynamic

Tasks lab
STM32CubeMX – adding tasks with the same function

Press FreeRTOS button within Pinout&Configuration tab

1

2

3

4

• We need to create 2 tasks:

• Task1:

• Priority: osPriorityNormal

• Stack Size: 128 Words

• Entry Function: StartTask

• Code Generation: Default

• Parameter: 0

• Allocation: Dynamic

• Task2:

• Priority: osPriorityNormal

• Stack Size: 128 Words

• Entry Function: StartTask

• Code Generation: Default

• Parameter: 1

• Allocation: Dynamic

• To configure the project
1. Select Project Manager tab

2. Within Project tab select:

• project name

• Project location

• Type of toolchain

• To Generate Code
3. Select Generate Code button

Tasks lab
code generation

12

3

2

Tasks lab
analysis of the code generated by STM32CubeMX

• Any component in FreeRTOS need to have handle, very similar to STM32CubeMX

• Task function prototypes, names was taken from STM32CubeMX

• Before the scheduler is start we must create tasks

/* Private variables ---*/
osThreadId Task1Handle;
osThreadId Task2Handle;

/* Private function prototypes ---*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
void StartTask1(void const * argument);
void StartTask2(void const * argument);

/* Create the thread(s) */
/* definition and creation of Task1 */
osThreadDef(Task1, StartTask1, osPriorityNormal, 0, 128);
Task1Handle = osThreadCreate(osThread(Task1), NULL);

/* definition and creation of Task2 */
osThreadDef(Task2, StartTask2, osPriorityNormal, 0, 128);
Task2Handle = osThreadCreate(osThread(Task2), NULL);

Define task

parameters

Create task,

allocate memory

printf redirection to USART2
• The following code should be included into main.c file to redirect printf

output stream to UART2

/* USER CODE BEGIN Includes */

#include <stdio.h>

/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int _write(int file, char *ptr, int len)

{

HAL_UART_Transmit(&huart2,(uint8_t *)ptr,len,10);

return len;

}

/* USER CODE END 0 */

Tasks lab
some code modifications

• Start the scheduler. Its function should never ends *)

• On first task run StartTask1 is called

• Task must have inside infinite loop in case we don’t want to end the task

• Similar code prepare for Task2 function

• You can monitor both tasks output in debug (printf) viewer from the first lab

• Modify the code for both tasks in order to display a number of the task call, like: “Task2. Call no 12”

/* Start scheduler */
osKernelStart();

void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{

printf("Task 1\n");
osDelay(1000);

}
/* USER CODE END 5 */

}

Endless loop

osDelay will start

context switch

*) if it ends, it means that we are out of declared heap size and there was not enough memory space to create a new task

Tasks lab
• If both Delays are processed the FreeRTOS is in idle state

Task1

Priority level

High priority

Low priority

time

osDelay

PendSV

osDelay

PendSV

Task2 Task1Task1

osDelay

PendSV

osDelay

PendSV

Task2

Delay ends

PendSV

Idle

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Tasks lab

• Without Delays the threads will be in Running state or in Ready state

• Use HAL_Delay()

Task1

Priority level

High priority

Low priority

time

SysTick

PendSV

SysTick

PendSV

Task2 Task1Task1

SysTick

PendSV

SysTick

PendSV

Task2

SysTick

PendSV

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running
Task1

Task2

Tasks lab
task priorities

• Increase the priority of Task1

• Double click on task for change

• Button OK

• Regenerate the code and compile it

• Is there any difference in the printf window during debug?

• What could be done to see the difference (Task1 more frequent occurrence)

Tasks lab
task priorities

• After we 5x times send text put task to block state

• Because task have high priority it allow to run lower priority task

/* USER CODE END 4 */
void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
uint32_t i = 0;
/* Infinite loop */
for(;;)
{

for (i = 0; i < 5; i++){
printf("Task 1\n");
HAL_Delay(50);

}
osDelay(1000);

}
/* USER CODE END 5 */

}

Helps not spam

terminal

Block task

Tasks lab
task priorities

• If higher priority task is not running we can print text from this task

/* StartTask2 function */
void StartTask2(void const * argument)
{

/* USER CODE BEGIN StartTask2 */
/* Infinite loop */
for(;;)
{

printf("Task 2\n");
HAL_Delay(50);

}
/* USER CODE END StartTask2 */

}

Helps not spam

terminal

Tasks lab

• What happen if Task1 not call osDelay() ?

Task1

Priority level

High priority

Low priority

time

osDelay

PendSV

Delay end

PendSV

Task2
Task1Task1

Delay end

PendSV

osDelay

PendSV

Task2

osDelay

PendSV

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Runnning
Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running
Task1

Task2

Tasks lab

• Task1 will be executed continuously

Task1

Priority level

High priority

Low priority

time

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running

Task1

Task2

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running
Task1

Task2

Suspend

Ready

Blocked

Running

Task2

Suspend

Ready

Blocked

Running

Task2

Task1 Task1

osDelay API

• Delay function

• Delay function which measure time from which is delay measured

osStatus osDelay (uint32_t millisec)

osStatus osDelayUntil (uint32_t PreviousWakeTime, uint32_t millisec)

Include vTaskDelayUntilInclude vTaskDelayUntil

Include vTaskDelayInclude vTaskDelay

osDelay API
step by step

• osDelay() calls vTaskDelay() (tasks.c file)

• vTaskDelay() is performing the following list of operations:

• Calls vTaskSuspendAll() to pause the scheduler without disabling interrupts. RTOS tick will
be held pending until the scheduler has been resumed.

• Remove task from event list (running tasks) and move it to delayed list with given delay value
using the function prvAddCurrentTaskToDelayedList()

• Resume the scheduler using xTaskResumeAll() function

• Trigger PendSV interrupt (using portYIELD_WITHIN_API() macro) to switch the context

Include vTaskDelayInclude vTaskDelay

osDelay(), osDelayUntil functions

• osDelay() start measure time from osDelay call

Include vTaskDelayInclude vTaskDelay

Task 1

Task 2

p
ri
o
ri
ty

IDLE PendSVPendSV

Task 2Task 2

Task 2

Delay end

Delay time

Task 1 … osDelayTask 1 … osDelay IDLEIDLE

PendSVPendSV PendSVPendSV

Task 2 … osDelayTask 2 … osDelay

PendSVPendSV

Task 2Task 2

Task 2

Delay end

Delay time

Task 1 … osDelayTask 1 … osDelay IDLEIDLE

PendSVPendSV PendSVPendSV

Task 2 …osDelayUntilTask 2 …osDelayUntil

• osDelayUntil() starts measure time from point which we selected

Reference start

Include vTaskDelayUntilInclude vTaskDelayUntil

osDelay() and osDelayUntil()

• Enable vTaskDelayUntil in Include parameters

• Regenerate project, modify tasks to:

void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
uint32_t i = 0;
/* Infinite loop */
for(;;)
{
printf("Task 1\n");
HAL_Delay(1000);
osDelay(2000);

}
/* USER CODE END 5 */

}

/* StartTask2 function */
void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
/* Infinite loop */
for(;;)
{
printf("Task 2\n");
HAL_Delay(200);

}
/* USER CODE END StartTask2 */

}

Delay

between two

run is 2s

Include vTaskDelayUntilInclude vTaskDelayUntil

Include vTaskDelayInclude vTaskDelay

osDelay() and osDelayUntil()
• Enable vTaskDelayUntil in Include parameters

• Regenerate project, modify tasks to:

void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
uint32_t wakeuptime;
wakeuptime=osKernelSysTick();
/* Infinite loop */
for(;;)
{

printf("Task 1\n");
HAL_Delay(1000);
osDelayUntil(wakeuptime,2000);

}
/* USER CODE END 5 */

}

Function will be

executed every 2s

Real delay timeTime from which the

delay is measured

For osDelayUntil function we

need mark wakeup time

Include vTaskDelayUntilInclude vTaskDelayUntil

Thread priority get API
step by step

• osThreadGetPriority() calls uxTaskPriorityGet() or

uxTaskPriorityGetFromISR() (tasks.c file)

• uxTaskPriorityGet() is performing the following list of operations:

• Entering into critical section (to avoid any parallel operations on OS) using
taskENTER_CRITICAL() in case of executing from thread mode or
portSET_INTERRUPT_MASK_FROM_ISR() in case of interrupt mode

• Read priority value from TCB of the given task using function prvGetTCBFromHandle(TCB_t
xTask)

• extract Priority value from the TCB structure (uxPriority field)

• Exit from critical section using taskEXIT_CRITICAL() in case of executing from thread mode or
portCLEAR_INTERRUPT_MASK_FROM_ISR() in case of interrupt mode

Include uxTaskPriorityGetInclude uxTaskPriorityGet

Thread priority set API
step by step

• osThreadSetPriority() calls vTaskPrioritySet() (tasks.c file)

• vTaskPrioritySet() is performing the following list of operations:

• Entering into critical section (to avoid any parallel operations on OS) using
taskENTER_CRITICAL()

• Set given priority value to TCB of the given task

• Checks whether task should not be moved to different task list due to new priority

• Exit from critical section using taskEXIT_CRITICAL()

Include vTaskPrioritySetInclude vTaskPrioritySet

Priority change lab

• How priorities are changed?

Task1Task1

SysTick

PendSV

SysTick

PendSV

Task1Task1

osThreadSetPriority

Task 2 Pri +1

Task2Task2

osThreadSetPriority

Task 2 Pri +1

Task1Task1

0

Include vTaskPrioritySetInclude vTaskPrioritySet

Include uxTaskPriorityGetInclude uxTaskPriorityGet

osThreadSetPriority

Task 2 Pri -2

SysTick

PendSV

SysTick

PendSV
PendSVPendSV

Task 2

priority

IDLE

Task 2

IDLE IDLE

Task 2

IDLE

4
5

Task 1 Task 1 Task 1, Task2 Task 16

time

Priority change lab

• Task1 has higher priority than Task2

• If not yet done, enable vTaskPriorityGet

and uxTaskPrioritySet

in IncludeParameters

Include vTaskPrioritySetInclude vTaskPrioritySet

Include uxTaskPriorityGetInclude uxTaskPriorityGet

Priority change lab

• Modify Task1 to:

void StartTask1(void const * argument)
{
/* USER CODE BEGIN 5 */
osPriority priority;
/* Infinite loop */
for(;;)
{
priority=osThreadGetPriority(Task2Handle);
printf("Task 1\n");
osThreadSetPriority(Task2Handle,priority+1);
HAL_Delay(1000);

}
/* USER CODE END 5 */

}

Increase Task2 priority

Read Task2 priority

Include vTaskPrioritySetInclude vTaskPrioritySet

Include uxTaskPriorityGetInclude uxTaskPriorityGet

Priority change lab

• Modify Task2 to:

/* StartTask2 function */
void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
osPriority priority;
/* Infinite loop */
for(;;)
{
priority=osThreadGetPriority(NULL);
printf("Task 2\n");
osThreadSetPriority(NULL,priority-2);

}
/* USER CODE END StartTask2 */

}

Decrease task priority

Read priority of current task

Include vTaskPrioritySetInclude vTaskPrioritySet

Include uxTaskPriorityGetInclude uxTaskPriorityGet

Creating and deleting tasks lab

• Example how to create and delete tasks

Include vTaskDeleteInclude vTaskDelete

PendSVPendSV

Task 1

Delay

end

PendSVPendSVPendSVPendSV

Delete of Task2

Task 1

Task 2

p
ri
o
ri
ty

IDLE

Task 1Task 1 Task 1Task 1Task 1Task 1

Create of Task2

osThreadCreate

Task 2Task 2

osThreadTerminate

osDelay

IDLEIDLE

time

Creating and deleting tasks lab

• Example how to create tasks

• Comment Task2 creation part in main.c

• Modify Task1 to create task2

/* definition and creation of Task2 */
// osThreadDef(Task2, StartTask2, osPriorityNormal, 0, 128);
// Task2Handle = osThreadCreate(osThread(Task2), NULL);

void StartTask1(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
printf("Create task2");
osThreadDef(Task2, StartTask2, osPriorityNormal, 0, 128);
Task2Handle = osThreadCreate(osThread(Task2), NULL);
osDelay(1000);

}
/* USER CODE END 5 */

}

Task 2 creation

Tasks_labTasks_lab

Creating and deleting tasks lab

• Example how to delete tasks

• Modify Task2 to delete himself:

/* StartTask2 function */
void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
/* Infinite loop */
for(;;)
{
printf("Delete Task2\n");
osThreadTerminate(Task2Handle);

}
/* USER CODE END StartTask2 */

}

Delete Task

Include vTaskDeleteInclude vTaskDelete

osThreadTerminate API
step by step

• osThreadTerminate() calls vTaskDelete() (cmsis_os.c file)

• The only argument specifies the ID of the task to be deleted. NULL means that the

calling task will be deleted.

• vTaskDelete() function (task.c file):

• Within critical section (started by taskENTER_CRITICAL() macro which is running
vPortEnterCritical() defined in port.c file) removes the task from the ready list using
function uxListRemove() and removes the task from waiting on an event tasks list.

• In case the task is deleting itself function is switching execution to the next task calling function
portYIELD_WITHIN_API() which could be in fact portYIELD() function (default setting,
FreeRTOS.h file)

Include vTaskDeleteInclude vTaskDelete

Memory allocated by the task code is not automatically freed and should be freed

before the task is deleted, TCB and its original stack are freed by IDLE Task.

Memory allocated by the task code is not automatically freed and should be freed

before the task is deleted, TCB and its original stack are freed by IDLE Task.

If the task has finished its job earlier…
• osThreadYield() – move the task from Run to Ready state. Next task with the

same priority will be executed.

Task1

Priority level

High priority

Low priority

time

Task1

Suspend

Ready

Blocked

Runing
Task1

Task2

Suspend

Ready

Blocked

Runing

Task1

Task2

Suspend

Ready

Blocked

Runing

Task1

Task2

Suspend

Ready

Blocked

Runing
Task1

Task2

Suspend

Ready

Blocked

Runing

Task1

Task2

Suspend

Ready

Blocked

Runing
Task1

Task2

os quant os quant os quant os quant

Task2 Task1

osTaskYield

PendSV

SysTick

PendSV

Task2 Task1 Task2

Task3Task3

Task3

osTaskYield

PendSV

SysTick

PendSV

SysTick

PendSV

SysTick

PendSV

SysTick

PendSV

osThreadYield() function
• osThreadYield() function is used to end task activity once the job is done to not

wait for the tick.

• It moves task from RUN mode to READY

• It makes sense if we have few tasks on the same priority otherwise yielded task will

be executed again

Task 1Task 1Task 2Task 2Task 1Task 1

PendSVPendSV

Task 1Task 1Task 2Task 2

osThreadYield

Task2 has the same priority as Task1

Task1 activity Task2 activity

Tick time

Task1 activity

PendSVPendSVSysTickSysTick

p
ri
o
ri
ty

time

osThreadYield API
step by step

• osThreadYield() calls taskYIELD() (cmsis_os.c file) which is defined as

portYIELD() (task.h file)

• portYIELD() function (portmacro.h file) triggers PendSV interrupt to request a

context switch to the next task from ready list

An example (version for IAR C compiler):
#define portYIELD()

{

/* Set a PendSV to request a context switch. */

portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;

__DSB();

__ISB();

}

Threads/Tasks APIs

CMSIS_RTOS API FreeRTOS API

osKernelInitialize() - empty -

osKernelStart() vTaskStartScheduler()

osKernelRunning() xTaskGetSchedulerState()

osKernelSysTick() xTaskGetTickCount()

xTaskGetTickCountFromISR()

osThreadCreate() xTaskCreate()

osThreadGetId() xTaskGetCurrentTaskHandle()

osThreadTerminate() vTaskDelete()

osThreadYield() taskYIELD()

osThreadSetPriority() vTaskPrioritySet()

osThreadGetPriority() uxTaskPriorityGet()

uxTaskPriorityGetFromISR()

osDelay() vTaskDelay()

Threads/Tasks APIs

CMSIS_RTOS API FreeRTOS API

osWait() – empty function -

osThreadGetState() eTaskGetState()

osThreadIsSuspended() eTaskGetState()

osThreadSuspend() vTaskSuspend()

osThreadSuspendAll() vTaskSuspendAll()

osThreadResume() vTaskResume()

xTaskResumeFromISR()

osThreadResumeAll() xTaskResumeAll()

osDelayUntil() vTaskDelayUntil()

osAbortDelay() xTaskAbortDelay()

osThreadList() vTaskList()

Intertask

communication

CMSIS OS inter-task communication

• Queues. Allows to pass more information between the tasks. Suspend task if tries to “put” to full

queue or “get” from empty one.

• Semaphores are used to communication between the tasks without specifying the ID of the thread

who can accept it. It allows counting multiple events and can be accepted by many threads.

• Direct to task notifications are used to precise communication between the tasks. It is necessary

to specify within signal thread id.

• Mutexes are used to guard the shared resources. It must be taken and released always in that

order by each task that uses the shared resource.

• Event Groups are used to synchronize task with multiple events (OR-ed together). There could be

8 or 24 bit value used here (depends on configUSE_16_BIT_TICKS settings) – not implemented in

CMSIS_OS API

FreeRTOS

Queues

Queues (1/2)

• Queues are pipes to transfer data between tasks in RTOS

• By default queue is behaving as FIFO (First In - First Out); can be redefined to
perform as LIFO (Last In - First Out) structure by using xQueueSendToFront()
function (not available in current CMSIS-RTOS API).

• All data send by queue must be of the same type, declared during queue
creation phase. It can be simple variable or structure.

• Within CMSIS-RTOS API there are two types of queues:

• Message where one can send only integer type data or a pointer

• Mail where one can send memory blocks

Queues (2/2)

• Length of queue is declared during creation phase and is defined as a number of
items which will be send via queue.

• Operations within queues are performed in critical sections (blocking interrupts
by programming BASEPRI register for the time of operation on queue.

• Tasks can block on queue sending or receiving data with a timeout or infinitely.

• If multiple tasks are blocked waiting for receiving/Sending data from/To a queue

then only the task with the highest priority will be unblocked when a data/space

is available. If both tasks have equal priority the task that has been waiting the

longest will be unblocked.

Queue structure management
queue.c

Name Description condition

*pcHead Points to the beginning of the queue storage area

*pcTail Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the

queue items, this is used as a marker

*pcWriteTo Points to the free next place in the storage area

*pcReadFrom Points to the last place that a queued item was read from when the structure is used as a queue Use of a union is an exception to the coding standard to

ensure two mutually exclusive structure members don't

appear simultaneously (wasting RAM)

uxRecursiveCallCount Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is

used as a mutex

Use of a union is an exception to the coding standard to

ensure two mutually exclusive structure members don't

appear simultaneously (wasting RAM)

xTasksWaitingToSend List of tasks that are blocked waiting to post onto this queue. Stored in priority order

xTasksWaitingToReceive List of tasks that are blocked waiting to read from this queue. Stored in priority order

uxMessagesWaiting The number of items currently in the queue

uxLength The length of the queue defined as the number of items it will hold, not the number of bytes.

uxItemSize The size of each items that the queue will hold.

xRxLock Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set

to queueUNLOCKED when the queue is not locked

xTxLock Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to

queueUNLOCKED when the queue is not locked.

uxQueueNumber configUSE_TRACE_FACILITY == 1

ucQueueType configUSE_TRACE_FACILITY == 1

*pxQueueSetContainer configUSE_QUEUE_SETS == 1

Receiver Task

osMessageGet

Receiver Task

Receiver Task

Receiver Task

osMessageGet

Receiver Task

Message 2

Message 2

Message 1

Message 1

Queue
Sender Task

osMessagePut

Message 1

Sender Task

osMessagePut

Sender Task

Sender Task

Sender Task

Message 2

Queue
• Create Queue:

osMessageQId osMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id)

osStatus osMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec)

osEvent osMessageGet (osMessageQId queue_id, uint32_t millisec)

Create QueueQueue Handle

Item to sendQueue handle Sending timeout

Queue handleStructure with status

and with received item

Receiving timeout

osStatus osMessageDelete (osMessageQId queue_id)

Queue handle

• Put data into Queue

• Receive data from Queue

• Delete the queue

Queue
• Read an item from a Queue without removing the item from it:

osEvent osMessagePeek (osMessageQId queue_id, uint32_t millisec)

Queue handleStructure with status and

with received item

Receiving timeout

• Get the number of messages stored in a queue

uint32_t osMessageWaitingPeek (osMessageQId queue_id)

Queue handleNumber of the messages

stored in a queue

• Get the available space in a message queue

uint32_t osMessageAvailableSpace(osMessageQId queue_id)

Queue handleAvailable space in a

message queue

Queue
• osEvent structure

• If we want to get data from osEvent we must use:

• osEventName.value.v if the value is 32bit message(or 8/16bit)

• osEventName.value.p and retype on selected datatype

typedef struct {
osStatus status; ///< status code: event or error information
union {
uint32_t v; ///< message as 32-bit value
void *p; ///< message or mail as void pointer
int32_t signals; ///< signal flags

} value; ///< event value
union {
osMailQId mail_id; ///< mail id obtained by \ref osMailCreate
osMessageQId message_id; ///< message id obtained by \ref osMessageCreate

} def; ///< event definition
} osEvent;

Queue lab
• Tasks part:

1. Rename tasks to Sender1 and Receiver and its functions.

2. If deleted, old tasks will be removed (with USER CODE !!!) from the code.

To keep the user code, just rename the task.

3. Set both tasks to normal priority

• Queue part

4. Button Add

5. Set queue size to 256

6. Queue type to uint8_t

7. Button OK

1-3

4

5-7

printf redirection to USART2
• The following code should be included into main.c file to redirect printf

output stream to UART2

/* USER CODE BEGIN Includes */

#include <stdio.h>

/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int _write(int file, char *ptr, int len)

{

HAL_UART_Transmit(&huart2,(uint8_t *)ptr,len,10);

return len;

}

/* USER CODE END 0 */

Queue lab
code processing

• Queue handle is now defined

• Queue item type initialization, length definition and create of queue and memory

allocation

/* Private variables ---*/
osThreadId Sender1Handle;
osThreadId ReceiverHandle;
osMessageQId Queue1Handle;

/* Create the queue(s) */
/* definition and creation of Queue1 */
osMessageQDef(Queue1, 256, uint8_t);
Queue1Handle = osMessageCreate(osMessageQ(Queue1), NULL);

Queue item definition

Queue size

• Sender1 task

void StartSender1(void const * argument)
{

/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{

printf("Task1\n");
osMessagePut(Queue1Handle,0x1,200);
printf("Task1 delay\n");
osDelay(1000);

}
/* USER CODE END 5 */

}

Put value ‘1’ into queue

Queue handle

Item to send

Timeout for send

Queue lab
code processing

• Receiver task

/* StartReceiver function */
void StartReceiver(void const * argument)
{
/* USER CODE BEGIN StartReceiver */
osEvent retvalue;
/* Infinite loop */
for(;;)
{
printf("Task2\n");
retvalue=osMessageGet(Queue1Handle,4000);
printf(“%d \n",retvalue.value.p);

}
/* USER CODE END StartReceiver */

}

Get item from queue

Queue handle

How long we wait on

data in queue

It will block task

Queue lab
code processing

Receiver

Task

Blocked

Receiver

Task

Receiver Task

Blocked

Receiver Task

Blocked

Sender Task

Receiver Task

osMessageGet

Receiver Task

Message 1

Queue Blocking

Sender Task

Message 1

osMessagePut

Sender Task

Sender Task

osMessageGet

osMessageGet

Queue Blocking
• After calling osMessagePut()

• If there is no free space in queue the Sender task is blocked for settable time then it will

continue (without sending the data)

• If there is free space in queue the Sender task will continue just after data send

• After calling osMessageGet()

• If any data are not in queue the Receiver task is blocked for settable time then it will continue

(without data reception)

• If the data are in queue the task will continue just after data reception

ReceiverReceiver

PendSVPendSV

Sender1

osMessageGet

Sender1Sender1

Receiver

osMessagePut

p
ri
o
ri
ty

PendSV

SysTick

PendSV

SysTick

ReceiverReceiver

osMessageGet

PendSV

SysTick

PendSV

SysTick

Sender1Sender1

osMessagePut

Blocked

Two senders lab

• Let’s create two sending tasks: Sender1, Sender2 and one Receiver task with the

same priorities.

Multiple senders, one receiver

• Because tasks have same priority, receiver will get data from queue after both task put data into queue

• What would happened if will be more tasks?

P
e
n
d
S

V
P

e
n
d
S

V

Sender1

R
e
c
e
iv

e
r

R
e
c
e
iv

e
r

o
s
M

e
s
s
a
g

e
G

e
t

Receiver

S
e

n
d

e
r1

S
e

n
d

e
r1

o
s
M

e
s
s
a

g
e

P
u
t

p
ri
o
ri
ty

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e

n
d

e
r2

S
e

n
d

e
r2

o
s
M

e
s
s
a
g

e
P

u
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

R
e
c
e
iv

e
r

R
e
c
e
iv

e
r

o
s
M

e
s
s
a

g
e

G
e

t

Blocked

Sender2

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e

n
d

e
r1

S
e

n
d

e
r1

o
s
M

e
s
s
a
g

e
P

u
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e

n
d

e
r2

S
e

n
d

e
r2

o
s
M

e
s
s
a
g

e
P

u
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e

n
d

e
r1

S
e

n
d

e
r1

o
s
M

e
s
s
a
g

e
P

u
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e

n
d

e
r2

S
e

n
d

e
r2

o
s
M

e
s
s
a
g

e
P

u
t

Blocked

P
e
n
d
S

V
P

e
n
d
S

V

Queue empty Queue full

Two senders lab

• Two sending tasks

• They are same no change necessary

void StartSender1(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
printf("Task1\n");
osMessagePut(Queue1Handle,0x1,200);
printf("Task1 delay\n");
osDelay(2000);

}
/* USER CODE END 5 */

}

void StartSender2(void const * argument)
{
/* USER CODE BEGIN StartSender2 */
/* Infinite loop */
for(;;)
{
printf("Task2\n");
osMessagePut(Queue1Handle,0x2,200);
printf("Task2 delay\n");
osDelay(2000);

}
/* USER CODE END StartSender2 */

}

Two senders lab

• Simple receiver

/* StartReceiver function */
void StartReceiver(void const * argument)
{
/* USER CODE BEGIN StartReceiver */
osEvent retvalue;
/* Infinite loop */
for(;;)
{
retvalue=osMessageGet(Queue1Handle,4000);
printf("Receiver\n");
printf("%d \n",retvalue.value.p);

}
/* USER CODE END StartReceiver */

}

Receiver with higher priority lab
• Senders have same priority

• Receiver have higher priority than senders

• Please verify whether behavior is inline with expectations

2x

Receiver with higher priority lab

• Receiver is now unblocked every time when sender tasks put data into queue

P
e
n
d
S

V
P

e
n
d
S

V

R
e

c
e

iv
e

r
R

e
c
e

iv
e

r
o

s
M

e
s
s
a
g

e
G

e
t

S
e

n
d

e
r1

S
e

n
d

e
r1

o
s
M

e
s
s
a

g
e

P
u
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

R
e

c
e

iv
e

r
R

e
c
e

iv
e

r
o

s
M

e
s
s
a
g

e
G

e
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e
n
d
e
r2

S
e
n
d
e
r2

o
s
M

e
s
s
a

g
e

P
u
t

Blocked

Sender1

Receiver
p
ri
o
ri
ty

Sender2

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

R
e

c
e

iv
e

r
R

e
c
e

iv
e

r
o

s
M

e
s
s
a
g

e
G

e
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e

n
d

e
r1

S
e

n
d

e
r1

o
s
M

e
s
s
a
g

e
P

u
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

R
e

c
e

iv
e

r
R

e
c
e

iv
e

r
o

s
M

e
s
s
a
g

e
G

e
t

P
e
n
d
S

V

S
y
s
T

ic
k

P
e
n
d
S

V

S
y
s
T

ic
k

S
e

n
d

e
r2

S
e

n
d

e
r2

o
s
M

e
s
s
a

g
e

P
u

t

P
e
n
d
S

V
P

e
n
d
S

V

Queue empty

Blocked

Queue empty

Blocked

Queue empty

Blocked

Queue empty

Single sender, two receivers

• Message from the queue is taken by the task with higher priority

• In case of equal priorities currently executed or first executed task will

get the message. It is not deterministic.

Queue items lab

• Queues allow to define type (different variables or structures) which the queue use.

• Within Queue1 Item size put a structure called Data

• Regenerate project

Queue items lab

• Create new structure type for data

• Define Structures which will be sent from sender task

/* Define the structure type that will be passed on the queue. */
typedef struct
{
uint16_t Value;
uint8_t Source;

} Data;

/* Declare two variables of type Data that will be passed on the queue. */
Data DataToSend1={0x2018,1};
Data DataToSend2={0x2019,2};

Queue items lab

• Sent data from Sender1 task

void StartSender1(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
printf("Task1\n");
osMessagePut(Queue1Handle,(uint32_t)&DataToSend1,200);
printf("Task1 delay\n");
osDelay(2000);

}
/* USER CODE END 5 */

}

Put data into queue

• Prepare similar code for Sender2

Queue
• osEvent structure

• If we want to get data from osEvent we must use:

• osEventName.value.v if the value is 32bit message(or 8/16bit)

• osEventName.value.p and retype on selected datatype

typedef struct {
osStatus status; ///< status code: event or error information
union {
uint32_t v; ///< message as 32-bit value
void *p; ///< message or mail as void pointer
int32_t signals; ///< signal flags

} value; ///< event value
union {
osMailQId mail_id; ///< mail id obtained by \ref osMailCreate
osMessageQId message_id; ///< message id obtained by \ref osMessageCreate

} def; ///< event definition
} osEvent;

/* StartReceiver function */
void StartReceiver(void const * argument)
{
/* USER CODE BEGIN StartReceiver */
osEvent retvalue;
/* Infinite loop */
for(;;)
{
retvalue=osMessageGet(Queue1Handle,4000);
if(((Data*)retvalue.value.p)->Source==1){
printf("Receiver Receive message from Sender 1\n");

}else{
printf("Receiver Receive message from Sender 2\n");

}
printf("Data: %d \n",((Data*)retvalue.value.p)->Value);

}
/* USER CODE END StartReceiver */

}

Queue items lab

• Receiver data from sender task

Get data from queue

Decode data from osEvent structure

Mail Queue

• In mail queue we are transferring memory blocks which needs to be allocated
(before put the data there) and freed (after taking data out)

• Mail queue passes pointers to allocated memory blocks within the message
queue, so there is no big data transfers. It is an advantage to message queues.

Mail Queue
• Create Mail Queue:

osMailQId osMailCreate (const osMailQDef_t *queue_def, osThreadId thread_id)

osStatus osMailPut (osMailQId queue_id, void * mail)

osEvent osMessageGet (osMailQId queue_id, uint32_t millisec)

Create Mail QueueMail Queue Handle

Mail Queue handleStatus of the operation

Mail Queue handleStructure with status and

with received item

osStatus osMailFree (osMailQId queue_id, void *mail)

Mail Queue handle

• Put a mail to a Queue

• Receive mail from a Queue

• Free a memory block from a mail

Status of the operation

Mail Queue
• Allocate a memory block from a mail

void * osMailAlloc (osMailQId queue_id, uint32_t millisec)

Mail Queue handle

• Allocate a memory block from a mail and set memory block to zero

void * osMailCAlloc (osMailQId queue_id, uint32_t millisec)

Mail Queue handle

Queues APIs
CMSIS_RTOS API FreeRTOS API

osMessageCreate() xQueueCreateStatic()

xQueueCreate()

osMessagePut() xQueueSend()

xQueueSendFromISR()

osMessageGet() xQueueReceive()

xQueueReceiveFromISR()

osMessageDelete() vQueueDelete(queue_handler)

osMessageWaiting() uxQueueMessagesWaiting(queue_handler)

uxQueueMessagesWaitingFromISR(queue_handler)

- xQueueSendToBack(queue_handle,*to_queue,block_time)

xQueueSendToBackFromISR(queue_handle,*to_queue,block_time)

- xQueueSendToFront(queue_handle,*to_queue,block_time)

xQueueSendToFrontFromISR(queue_handle,*to_queue,block_time)

osMessagePeek() xQueuePeek(queue_handle,*to_queue,block_time)

osMessageAvailableSpace() Returns uxQueueSpacesAvailable

Mail Queue APIs

CMSIS_RTOS API FreeRTOS API

osMailCreate() pvPortMalloc(), xQueueCreate(), osPoolCreate()

osMailAlloc() osPoolAlloc()

osMailCAlloc() osMailAlloc(),

osMailPut() xQueueSendFromISR()

xQueueSend()

osMailGet() xQueueReceiveFromISR()

xQueueReceive()

osMailFree() osPoolFree()

FreeRTOS

Semaphores

Semaphores
• Semaphores are used to synchronize tasks with other events in the system (especially IRQs)

• Waiting for semaphore is equal to wait() procedure, task is in blocked state not taking CPU time

• Semaphore should be created before usage

• In FreeRTOS implementation semaphores are based on queue mechanism

• In fact those are queues with length 1 and data size 0

• There are following types of semaphores in FreeRTOS:

• Binary – simple on/off mechanism

• Counting – counts multiple give and multiple take

• Mutex – Mutual Exclusion type semaphores (explained later on)

• Recursive (in CMSIS FreeRTOS used only for Mutexes)

• Turn on semaphore = give a semaphore can be done from other task or from interrupt subroutine (function
osSemaphoreRelease())

• Turn off semaphore = take a semaphore can be done from the task (function osSemaphoreWait())

Semaphores: binary vs counting

A CC

IRQ1 DD

00

A CC

IRQ1 DD

11

A CC

IRQ1 DD

osSemaphoreWait

00

blocked

blocked

give

Run/ready

blocked

blocked

blocked

A CC

IRQ1 DD

00

A CC

IRQ1 DD

give

22

A CC

IRQ1 DD

take

11

blocked

blocked

give

Run/ready

blocked

blocked

blocked

A CC

IRQ1 DD
take

00

Run/ready

Run/ready

Binary Counting

osSemaphoreRelease

osSemaphoreWait

osSemaphoreWait

osSemaphoreRelease

osSemaphoreRelease osSemaphoreRelease

Task2

Blocked

Task2

Task2Task2

Blocked

Binary Semaphore

Task1

osSemaphoreWait

Task2

Blocked
Task1

osSemaphoreRelease osSemaphoreWait

Task1

osSemaphoreWait

Task2Task1

osSemaphoreRelease

Task2Task1

osSemaphoreWait

time

Binary Semaphore
• Semaphore creation

• Wait for Semaphore release

• Semaphore release

osSemaphoreId osSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count)

int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec)

osStatus osSemaphoreRelease (osSemaphoreId semaphore_id)

Semaphore handle
Semaphore

definition
Semaphore ‘tokens’

For binary semaphore is 1

Semaphore handle How long wait for semaphore release

• 0 – no wait

• >0 – delay in ms

• 0xFFFFFFFF - forever

Semaphore handleReturn status

Should be: Number of ‘tokens

in semaphore’, but it is status

osStatus (in v 24.12.2014)

like for Mutex

Binary Semaphore lab

• Create two tasks Task1, Task2 with the same priorities

Binary Semaphore lab

Create binary semaphore

1. Select Timers and

Semaphore tab

2. Click Add button in Binary

Semaphores section

3. Set name:

myBinarySem01

4. Click OK button

2

3

4

1

Binary Semaphore lab
• Task1 is synchronized with Task2

• Both tasks have the same priorities

• Task1 is waiting for semaphore (with 4sec delay)

• Task2 is releasing the semaphore

Task1Task1

PendSVPendSV

Task2

osSemaphoreWait

Task2Task2

Task1

osSemaphore

Release

p
ri
o
ri
ty

PendSV

SysTick

PendSV

SysTick

Task1Task1
osSemaphoreWait

PendSV

SysTick

PendSV

SysTick

Task2Task2
osSemaphore

Release

Blocked

printf redirection to USART2
• The following code should be included into main.c file to redirect printf

output stream to UART2

/* USER CODE BEGIN Includes */

#include <stdio.h>

/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int _write(int file, char *ptr, int len)

{

HAL_UART_Transmit(&huart2,(uint8_t *)ptr,len,10);

return len;

}

/* USER CODE END 0 */

Binary Semaphore lab
code processing

• Semaphore handle definition

• Semaphore creation

/* Private variables ---*/
osThreadId Task1Handle;
osThreadId Task2Handle;
osSemaphoreId myBinarySem01Handle;

/* Create the semaphores(s) */
/* definition and creation of myBinarySem01 */
osSemaphoreDef(myBinarySem01);
myBinarySem01Handle = osSemaphoreCreate(osSemaphore(myBinarySem01), 1);

• Semaphore release usage

• If tasks/interrupt is done the semaphore is released

void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(2000);
printf("Task1 Release semaphore\n");
osSemaphoreRelease(myBinarySem01Handle);

}
/* USER CODE END 5 */

}

Binary Semaphore lab
code processing

• Semaphore wait usage

• Second task waits on semaphore release

After release task is unblocked and continue in work

void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
/* Infinite loop */
for(;;)
{
osSemaphoreWait(myBinarySem01Handle,4000);
printf("Task2 synchronized\n");

}
/* USER CODE END StartTask2 */

}

Binary Semaphore lab
code processing

• Semaphore can be released from interrupt (if interrupt priority is below – higher

number in CortexM cores - configured
configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY)

• Using HAL libraries we can release semaphore in the callback (JOY_CENTER

button press):

/* USER CODE BEGIN 4 */

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)

{
osSemaphoreRelease(myBinarySem01Handle);

}
/* USER CODE END 4 */

Binary Semaphore lab
code processing

Counting semaphores
• Counting semaphores can be seen as a as queues of length greater than one.

users of the semaphore (Tasks, IT) are not interested in the data that is stored in

the queue, just whether the queue is empty or not.

• Counting semaphores are typically used for two purposes:
• Counting events : an event handler will 'give' a semaphore each time an event occurs (incrementing the

semaphore count value), and a handler task will 'take' a semaphore each time it processes an event

(decrementing the semaphore count value). The count value is the difference between the number of

events that have occurred and the number that have been processed. In this case it is desirable for the

count value to be zero when the semaphore is created.

• Resource management : the count value indicates the number of resources available. To obtain control of

a resource a task must first obtain a semaphore decrementing the semaphore count value. When the count

value reaches zero there are no free resources. When a task finishes with the resource it releases (gives)

the semaphore back incrementing the semaphore count value. In this case it is desirable for the count

value to be equal the maximum count value when the semaphore is created.

configUSE_COUNTING_SEMAPHORE

Counting semaphores
• API is the same as for Binary semaphore

• Semaphore creation

• Wait for Semaphore release

Return value (osStatus):

• 0 – semaphore released within given timeout (milisec)

• 0xFF – semaphore not released

• Semaphore release

osSemaphoreId osSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count)

int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t milisec)

osStatus osSemaphoreRelease (osSemaphoreId semaphore_id)

configUSE_COUNTING_SEMAPHORE

0 – no delay

>0 – delay in ms

0xFFFFFFFF – wait forever

0 – no delay

>0 – delay in ms

0xFFFFFFFF – wait forever

Task3

Blocked

Task3

Task3

Task3Task3

Counting Semaphore

Task2

Task2

Task1

osSemaphoreRelease

Task1

osSemaphoreRelease

Task2

Blocked

Task3Task2

osSemaphoreWait

Task1

Task2

Blocked

Task3Task2

osSemaphoreWait

Task1

Task2

osSemaphoreWait

Task1

Counting Semaphore lab

• Create three tasks (Task1, Task2, Task3) with same priority

• Set entry function o StartTask1,2,3 respectively

• Keep all other parameters in default value

Counting Semaphore lab
Enable Counting semaphore

1. Select Config parameters tab

2. Change “USE_COUNTING_SEMAPHORES” to Enabled

Counting Semaphore lab
Create Counting semaphore

1. Select Timers and Semaphores tab

2. Click Add button in Counting

Semaphores section

3. Set name to myCountingSem01

4. Set count of tokens to 2

5. Click OK button

Counting Semaphore lab

• Task1 and Task2 release semaphore

• Task 3 wait for two tokens

Task2Task1

p
ri
o
ri
ty

Task3

Task3Task3

PendSVPendSV

osSemaphore

Wait

Task1Task1
osSemaphore

Release

PendSV

SysTick

PendSV

SysTick

Task2Task2
osSemaphore

Release

PendSV

SysTick

PendSV

SysTick

Task3Task3
osSemaphore

Wait

Blocked

Task3Task3
osSemaphore

Wait

0

1 2 1

0

printf redirection to USART2
• The following code should be included into main.c file to redirect printf

output stream to UART2

/* USER CODE BEGIN Includes */

#include <stdio.h>

/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int _write(int file, char *ptr, int len)

{

HAL_UART_Transmit(&huart2,(uint8_t *)ptr,len,10);

return len;

}

/* USER CODE END 0 */

Counting Semaphore lab
code processing• Create Counting semaphore

• Task1 and Task2 will be same

/* Create the semaphores(s) */
/* definition and creation of myCountingSem01 */
osSemaphoreDef(myCountingSem01);
myCountingSem01Handle = osSemaphoreCreate(osSemaphore(myCountingSem01), 2);

void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(2000);
printf("Task1 Release counting semaphore\n");
osSemaphoreRelease(myCountingSem01Handle);

}
/* USER CODE END 5 */

}

void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
/* Infinite loop */
for(;;)
{

osDelay(2000);
printf("Task2 Release counting semaphore\n");
osSemaphoreRelease(myCountingSem01Handle);

}
/* USER CODE END StartTask2 */

}

• Task3 will wait until semaphore will be 2 times released

void StartTask3(void const * argument)
{
/* USER CODE BEGIN StartTask3 */
/* Infinite loop */
for(;;)
{
osSemaphoreWait(myCountingSem01Handle, 4000);
osSemaphoreWait(myCountingSem01Handle, 4000);
printf("Task3 synchronized\n");
}
/* USER CODE END StartTask3 */

}

Counting Semaphore lab
code processing

Semaphores APIs

CMSIS_RTOS API FreeRTOS API

osSemaphoreCreate() vSemaphoreCreateBinaryStatic()

vSemaphoreCreateCountingStatic()

vSemaphoreCreateBinary()

xSemaphoreCreateCounting()

osSemaphoreWait() xSemaphoreTake()

xSemaphoreTakeFromISR()

osSemaphoreRelease() xSemaphoreGive()

xSemaphoreGiveFromISR()

osSemaphoreDelete() vSemaphoreDelete()

Direct to task

notification

CMSIS-OS – Signals

FreeRTOS – Task Notification

Direct to task notification
• FreeRTOS Direct Task notifications feature is available starting from release 8.2.0.

• Within CMSIS_OS it is covered by less featured Signals.

• Each FreeRTOS task has a 32-bit notification value. An RTOS task notification is an event sent

directly to a task that can unblock the receiving task.

• Task notifications can be used where previously it would have been necessary to create a

separate queue, binary semaphore, counting semaphore or event group. Unblocking an RTOS task

with a direct notification is 45% faster and uses less RAM than unblocking a task with a binary

semaphore.

• Task notification RAM footprint and speed advantage over other FreeRTOS feature (performing

equivalent functionalities). Nevertheless It presents following limitations:

• Task notifications can only be used to notify only one Task at a time : i.e only one task can be the recipient of the event. This condition is

however met in the majority of real world applications.

• If Task notification is used in place of a message queue then the receiving task (waiting for the notification) is set to the blocked state.

However The sending task (sending the notification) cannot wait in the Blocked state for a send to complete if the send cannot complete

immediately

configUSE_TASK_NOTIFICATIONS

http://www.freertos.org/Embedded-RTOS-Queues.html
http://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
http://www.freertos.org/Real-time-embedded-RTOS-Counting-Semaphores.html
http://www.freertos.org/FreeRTOS-Event-Groups.html

Signals

• Signals are used to trigger execution states between the threads and from IRQ to
thread.

• Each thread has up to 31 assigned signal flags.

• The maximum number of signal flags is defined in cmsis_os.h
(osFeature_Signals). It is set to 8. It is not possible to configure signals from
STM32CubeMX.

• Main functions:

• osSignalSet() - set specified signal flags of an active thread

• osSignalWait() - wait for one or more signal flags for running thread

int32_t osSignalSet (osThreadId thread_id, int32_t signals)

osEvent osSignalWait (int32_t signals, uint32_t milisec)

configUSE_TASK_NOTIFICATIONS

Signals
example

• We can reuse existing Tasks_lab

• Let’s define any signal

#define SIGNAL_BUTTON_PRESS 1 /* USER CODE BEGIN PD */

• Task1 is waiting (being in blocked mode) for an external interrupt occurrence.
/* USER CODE BEGIN 4 */

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)

{

osSignalSet(Task1Handle,SIGNAL_BUTTON_PRESS);

}

• Within external interrupt callback SIGNAL_BUTTON_PRESS is send to Task1

void StartTask1(void const * argument)

{

for(;;)

{

osSignalWait(SIGNAL_BUTTON_PRESS,osWaitForever); /* USER CODE BEGIN 5 */

HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin);

}

}

• RED LED will be toggled on each button press.

configUSE_TASK_NOTIFICATIONS

Signals
configUSE_TASK_NOTIFICATIONS

CMSIS_RTOS API FreeRTOS API

osSignalSet() (given value is OR-ed with current notification value

of given task – eSetBits action set in cmsis_os.c)

xTaskGenericNotify()

xTaskGenericNotifyFromISR()

osSignalClear() (empty declaration) Not available

osSignalWait() (it is clearing notification value) xTaskNotifyWait()

osSignalGet() (removed in CMSIS_OS v1.02) Not available

- xTaskNotifyGive()

vTaskNotifyGiveFromISR()

- ulTaskNotifyTake()

- xTaskNotifyStateClear()

Signals (task notifications) cannot be used:

• To send an event or data to IRQ

• To communicate with more than one task (thread)

• To buffer multiple data items

FreeRTOS

Resources management

Resource management
• Critical sections – when it is necessary to block small piece of code inside the task against

task switching or interrupts. This section should start with macro
taskENTER_CRITICAL(), and should end with macro taskEXIT_CRITICAL()

• Suspendig the scheduler – when waiting on interrupt and no task switching allowed.
Function vTaskSuspendAll() block context switching with interrupts enabled. Unblock
the tasks is done by xTaskResumeAll() function.

It is not allowed to run any FreeRTOS API function when scheduler is suspended.

• Gatekeeper task
• Dedicated procedure managing selected resource (i.e. peripheral)
• No risk of priority inversion and deadlock
• It has ownership of a resource and can access it directly
• Other tasks can access protected resource indirectly via gatekeeper task
• Example: standard out access

• Mutexes
• Kind of binary semaphore shared between tasks
• Require set configUSE_MUTEXES at 1 in FreeRTOSConfig.h

Critical sections

• Critical section mechanism allows to block all the interrupts during sensitive/atomic

operation execution (like operations on queues)

• To enter into critical section portENTER_CRITICAL() should be used

• To exit from critical section portEXIT_CRITICAL() should be used

void function(void)

{

portENTER_CRITICAL();

..sensitive code

execution

portEXIT_CRITICAL();

}

Storing current BASEPRI value (current level of interrupt masking) and

programming BASEPRI with MASK value *)

It means masking of all interrupts below this value

restoring BASEPRI value and masking of all interrupts below this value

*) MASK = configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY<<(8- configPRIO_BITS)

= 4 for CortexM3, CortexM4 based STM32defined in FreeRTOSConfig.h

Gatekeeper task
• Gatekeeper is a task being the only allowed to access certain resources

(i.e. peripheral).
• It owns selected resource and only it can access it directly; other tasks can do it

indirectly by using services provided by the gatekeeper task.
• There is nothing physically preventing other tasks from accessing the resource it is on the

designer side to program it proper way

• It is providing clean method to implement mutual exclusion without risk of priority
inversion or deadlock.

• It spends most of the time in the blocked state waiting for the requests on the
owned resources

• It is up to the designer to set the priority of the gatekeeper and its name.

FreeRTOS

Mutex

Mutex 1/2
• Mutex is a binary semaphore that include a priority inheritance mechanism.

• binary semaphore is the better choice for implementing synchronization

(between tasks or between tasks and an interrupt),

• mutex is the better choice for implementing simple mutual exclusion (hence

'MUT'ual 'EX'clusion).

• When used for mutual exclusion the mutex acts like a token that is used to guard a

resource.

• When a task wishes to access the resource it must first obtain ('take') the token.

• When it has finished with the resource it must 'give' the token back - allowing

other tasks the opportunity to access the same resource.

• In case of recursive mutex it should be given as many times as it was

successfully taken (like counting semaphores) to release it for another task.

Mutex 2/2
• Mutexes use the same access API functions as semaphores – this permits a block

time to be specified.

• The block time indicates the maximum number of 'ticks' that a task should enter the
Blocked state when attempting to 'take' a mutex if the mutex is not available
immediately.

• Unlike binary semaphores however - mutexes employ priority inheritance. This
means that if a high priority task is blocked while attempting to obtain a mutex
(token) that is currently held by a lower priority task, then the priority of the task
holding the token is temporarily raised to that of the blocked task.

• Mutex Management functions cannot be called from interrupt service routines

(ISR).

• A task must not be deleted while it is controlling a Mutex. Otherwise, the Mutex

resource will be locked out to all other tasks

Mutex, Semaphore – threats 1/3

Priority inversion

• This is the situation where a higher priority task is waiting for a lower priority task

to give a control of the mutex and low priority task is not able to execute.

Mutex, Semaphore – threats 2/3

Priority inheritance

• It is temporary raise of the priority of the mutex holder to that of the highest

priority task that is attempting to obtain the same mutex. The low priority task that

holds the mutex inherits the priority of the task waiting for the mutex. The priority

of the mutex holder is reset automatically to its original value when it gives the

mutex back.

• It is a mechanism that minimizes the negative effects of priority inversion

• It is complicating system timing analysis and it is not a good practice to rely on it

for correct system operation

Mutex, Semaphore – threats 3/3

Deadlock (Deadly Embrace)

• It occurs when two tasks cannot work because they are both waiting for a resource
held by each other

• The best way to avoid deadlock is to consider them at design time and design the
system to be sure that the deadlock cannot occur.

Task2

Blocked

Task2Task2

Blocked

Resours

e

Resource

Mutex

• Used to guard access to limited recourses

• Works very similar as semaphores

Task1

osMutexWait

Task2

Blocked

Resours

e

Task1

osMutexRelease Resource

Resours

eTask2

Resource

Task1

osMutexWait

Task2

Resours

e

Task1

osMutexRelease

Resource

osMutexWait

osMutexWait

Mutex
• Mutex creation

• Wait for Mutex release

• Mutex release

osMutexId osMutexCreate (const osMutexDef_t *mutex_def)

osStatus osMutexWait (osMutexId mutex_id, uint32_t millisec)

osStatus osMutexRelease (osMutexId mutex_id)

Mutex handle Mutex definition

Mutex handle How long wait for

mutex release

Mutex handleReturn status

Return status

configUSE_MUTEXES

Recursive mutex
• Recursive mutex creation

• Wait for Recursive mutex release

• Recursive mutex release

osMutexId osRecursiveMutexCreate (const osMutexDef_t *mutex_def)

osStatus osRecursiveMutexWait (osMutexId mutex_id, uint32_t millisec)

osStatus osRecursiveMutexRelease (osMutexId mutex_id)

Mutex handle Mutex definition

Mutex handle How long wait for

mutex release

Mutex handleReturn status

Return status

configUSE_RECURSIVE_MUTEXES

Mutex lab

Create two tasks: Task1, Task2 with same priorities

• Click Add button in Tasks section

• Set parameters (entry functions, stack size)

• Click OK button

configUSE_MUTEXES

Mutex lab

Enable Counting semaphore

1. Select Config parameters tab

2. Change “USE_MUTEXES” to Enabled

configUSE_MUTEXES

Mutex lab
Add Mutex

• Select Mutexes tab

• Click Add button in Mutexes section

• Set Mutex name to myMutex01

• Click OK button

Mutex lab
• Both tasks use printf function.

• Mutex is used to avoid collisions

Task2Task1

p
ri
o
ri
ty

Task1Task1
osMutexWait

Task1Task1
code

PendSV

SysTick

PendSV

SysTick

Only one task can have mutex

Task1Task1
osMutexRelease

Task2Task2
osMutexWait

Task2Task2
code

Only one task can have mutex

Task2Task2
osMutexRelease

printf redirection to USART2
• The following code should be included into main.c file to redirect printf

output stream to UART2

/* USER CODE BEGIN Includes */

#include <stdio.h>

/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int _write(int file, char *ptr, int len)

{

HAL_UART_Transmit(&huart2,(uint8_t *)ptr,len,10);

return len;

}

/* USER CODE END 0 */

Mutex lab
• Mutex handle definition

• Mutex creation

/* Private variables ---*/
osThreadId Task1Handle;
osThreadId Task2Handle;
osMutexId myMutex01Handle;

/* Create the mutex(es) */
/* definition and creation of myMutex01 */
osMutexDef(myMutex01);
myMutex01Handle = osMutexCreate(osMutex(myMutex01));

Mutex lab
• Task1 and Task2 using of Mutex

void StartTask1(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(2000);
osMutexWait(myMutex01Handle,1000);
printf("Task1 Print\n");
osMutexRelease(myMutex01Handle);

}
/* USER CODE END 5 */

}

void StartTask2(void const * argument)
{
/* USER CODE BEGIN StartTask2 */
/* Infinite loop */
for(;;)
{
osDelay(2000);
osMutexWait(myMutex01Handle,1000);
printf("Task2 Print\n");
osMutexRelease(myMutex01Handle);

}
/* USER CODE END StartTask2 */

}

Mutex APIs

CMSIS_RTOS API FreeRTOS API

osMutexCreate() xSemaphoreCreateMutexStatic()

xSemaphoreCreateMutex()

osMutexRelease() xSemaphoreGive()

xSemaphoreGiveFromISR()

osMutexWait() xSemaphoreTake()

xSemaphoreTakeFromISR()

osMutexDelete() vQueueDelete()

osRecursiveMutexCreate() xSemaphoreCreateRecursiveMutexStatic()

xSemaphoreCreateRecursiveMutex()

osRecursiveMutexRelease() xSemaphoreGiveRecursive()

osRecursiveMutexWait() xSemaphoreTakeRecursive()

FreeRTOS

Software Timers

http://img.clubic.com/06080356-photo-sony-smartwatch-2.jpg

Software Timers (1/3)

• Software timer is one of standard component of every RTOS

• FreeRTOS “software” Timers allows to execute a callback at a set of time (timer

period). Timer callback functions execute in the context of the timer service task.

• It is therefore essential that timer callback functions never attempt to block. For

example, a timer callback function must not call vTaskDelay(), vTaskDelayUntil(),

or specify a non zero block time when accessing a queue or a semaphore.

Software Timers (2/3)
• It is not precise, intended to handle periodic actions and delay generation

• Can be conditionally used to extend number of hardware timers in STM32

• Two types od software timers are available:

• Periodic (execute its callback periodically with autoreload functionality)

• One Pulse (execute its callback only once with an option of manual re-trigger)

Task1

osTimerStart

Software timer counting

Software

Timer

Callback

Task1

osTimerStart

Software timer counting

Software

Timer

Callback

Software timer counting

Software

Timer

Callback

Software timer counting

Software

Timer

Callback

Software Timers (3/3)
• When Timers are enabled (configUSE_TIMERS enabled) , the scheduler creates automatically the

timers service task (daemon) when started (calling xTimerCreateTimerTask() function).

• The timers service task is used to control and monitor (internally) all timers that the user will create.

• The timers task parameters are set through the fowling defines (in FreeRTOSConfig.h):

• configTIMER_TASK_PRIORITY : priority of the timers task

• configTIMER_TASK_STACK_DEPTH : timers task stack size (in words)

• The scheduler also creates automatically a message queue used to send commands to the timers

task (timer start, timer stop ...) .

• The number of elements of this queue (number of messages that can be hold) are configurable

through the define:

• configTIMER_QUEUE_LENGTH.

Software Timers
configuration

• Software timer is one of standard component of every RTOS

Config field

(default value)

description

configUSE_TIMERS

(0 – disabled)

1 – includes software timers functionality and automatically creates

timer service task on scheduler start

0 – disabled, no timer service task

configTIMER_TASK_PRIORITY

()

Priority for timer service task from the range between IDLE task

priority and configMAX_PRIORITIES-1

configTIMER_QUEUE_LENGTH

()

This sets the maximum number of unprocessed commands that the

timer command queue can hold at any one time.

configTIMER_TASK_STACK_DEPTH

()

Sets the size of the stack (in words, not bytes) allocated to the timer

service task.

configUSE_TIMERS

Software Timers
• Software timer creation

• Software timer start

• Software timer stop

osTimerId osTimerCreate (const osTimerDef_t *timer_def, os_timer_type type, void *argument)

osStatus osTimerStart (osTimerId timer_id, uint32_t millisec)

osStatus osTimerStop (osTimerId timer_id)

Timer handle Timer definition

Timer handle Timer period

Timer handleReturn status

Return status

Repeat timing or

onetime timing

configUSE_TIMERS

Software Timers lab
• Software timers are disabled by default in STM32CubeMX

• To enable them:

• Select Config parameters tab

• Set USE_TIMERS value to Enabled

• Other software timers parameters we will keep in default configuration

Software Timers lab

• Create one task, Task1 with entry function StartTask1 and normal priority

Software Timers lab
Create a new timer

• Select Timers and Semaphores tab

• Click Add button in Timers section

• Set timer name: i.e. myTimer01

• Timer callback name: i.e. Callback01

• Type: Periodic

• Click OK button

printf redirection to USART2
• The following code should be included into main.c file to redirect printf

output stream to UART2

/* USER CODE BEGIN Includes */

#include <stdio.h>

/* USER CODE END Includes */

/* USER CODE BEGIN 0 */

int _write(int file, char *ptr, int len)

{

HAL_UART_Transmit(&huart2,(uint8_t *)ptr,len,10);

return len;

}

/* USER CODE END 0 */

Software Timers lab
• Software timer handle definition

• Software timer creation

• Software timer start

/* Private variables ---*/
osThreadId Task1Handle;
osTimerId myTimer01Handle;

/* Create the timer(s) */
/* definition and creation of myTimer01 */
osTimerDef(myTimer01, Callback01);
myTimer01Handle = osTimerCreate(osTimer(myTimer01), osTimerPeriodic, NULL);

void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
osTimerStart(myTimer01Handle,1000);
/* Infinite loop */
for(;;)
{

osDelay(2000);
printf("Task1 Print\n");

}
/* USER CODE END 5 */

}

Software Timers lab

• Timer callback functions execute in the context of the timer service task.

• Timer callbacks are not called from interrupt context.

• There should be no blocking functions inside (like in hooks)

/* Callback01 function */
void Callback01(void const * argument)
{

/* USER CODE BEGIN Callback01 */
printf("Timer Print\n");
/* USER CODE END Callback01 */

}

/* Callback01 function */
void Callback01(void const * argument)
{

/* USER CODE BEGIN Callback01 */
printf("Timer Print\n");
osDelay(100);
/* USER CODE END Callback01 */

}

Software Timers APIs

CMSIS_RTOS API FreeRTOS API

osTimerCreate() xTimerCreateStatic()

xTimerCreate()

osTimerStart() xTimerChangePeriod()

xTimerChangePeriodFromISR()

osTimerStop() xTimerStop()

xTimerStopFromISR()

osTimerDelete() xTimerDelete()

- xTimerGetTimerDaemonTaskHandle()

- xTimerGetPeriod()

- xTimerGetExpiryTime()

- pcTimerGetName()

- xTimerGenericCommand()

FreeRTOS

advanced topics

Hooks

• Hooks are the callbacks supported by FreeRTOS core

• Those can help with FreeRTOS fault handling

• Type of hooks:
• Idle Hook

• Tick Hook

• Malloc Failed Hook

• Stack Overflow Hook

• STM32CubeMX creates hook functions in freertos.c file

void vApplicationIdleHook(void)
{

tick_IDLE++;
}

void vApplicationIdleHook(void)
{

tick_IDLE++;
}

Idle task and “idle task hook”
• Idle task is automatically created by scheduler within osKernelStart() function

• It has the lowest possible priority

• It runs only if there are no tasks in ready state

• It can share same priority with other tasks

• Specific function (called idle task hook function) can be called automatically from idle task.

Its prototype is strictly defined:

• void vApplicationIdleHook(void); // [weak] version in freertos.c file

• configUSE_IDLE_HOOK must be set to 1 in FreeRTOSConfig.h to get it called

• it must never attempt to block or suspend

• it is responsible to cleanup resources after deletion of other task

• it is executed every iteration of the idle task loop, do not put any endless loop inside

void vApplicationIdleHook(void)
{

while(1)
{

tick_IDLE++;
}

}

void vApplicationIdleHook(void)
{

while(1)
{

tick_IDLE++;
}

}

Correct Wrong

configUSE_IDLE_HOOK

Idle Hook
• If the scheduler cannot run any task it goes into idle mode

• Idle hook is callback from idle mode

• Within this task is possible to put power saving function

• It is necessary to enable it within Config parameters (part of

FreeRTOSConfig.h configuration file)

configUSE_IDLE_HOOK

Idle Hook
• Idle hook callback in freertos.c created by STM32CubeMX

• Do not use blocking functions (osDelay(), …) in this function or while(1)

/* USER CODE END FunctionPrototypes */
/* Hook prototypes */
void vApplicationIdleHook(void);

/* USER CODE BEGIN 2 */
__weak void vApplicationIdleHook(void)
{

/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
to 1 in FreeRTOSConfig.h. It will be called on each iteration of the idle
task. It is essential that code added to this hook function never attempts
to block in any way (for example, call xQueueReceive() with a block time
specified, or call vTaskDelay()). If the application makes use of the
vTaskDelete() API function (as this demo application does) then it is also
important that vApplicationIdleHook() is permitted to return to its calling
function, because it is the responsibility of the idle task to clean up
memory allocated by the kernel to any task that has since been deleted. */

}
/* USER CODE END 2 */

configUSE_IDLE_HOOK

Tick Hook

• Every time the SysTick interrupt is trigger the TickHook is called

• Is possible use TickHook for periodic events like watchdog refresh

• It is necessary to enable it within Config parameters (part of FreeRTOSConfig.h

configuration file)

configUSE_TICK_HOOK

Tick Hook

• Tick hook callback in freertos.c created by STM32CubeMX

• Do not use blocking functions (osDelay, …) in this function or while(1)

• Use only the interrupt safe FreeRTOS functions (with suffix FromISR()).

/* Hook prototypes */
void vApplicationTickHook(void);

/* USER CODE BEGIN 3 */
__weak void vApplicationTickHook(void)
{

/* This function will be called by each tick interrupt if
configUSE_TICK_HOOK is set to 1 in FreeRTOSConfig.h. User code can be
added here, but the tick hook is called from an interrupt context, so
code must not attempt to block, and only the interrupt safe FreeRTOS API
functions can be used (those that end in FromISR()). */

}
/* USER CODE END 3 */

configUSE_TICK_HOOK

Memory management models - monitoring
Malloc Failed Hook Function

• Memory allocation schemes implemented by heap_1.c, heap_2.c, heap_3.c, and heap_4 and
heap_5.c can optionally include malloc() failure hook (or callback) function that can be configured

to get called on pvPortMalloc() returning NULL.

• Defining malloc() failure hook will help to identify problems caused by lack of heap memory;

especially when call to pvPortMalloc() fails within an API function.

• Malloc failed hook will only get called if configUSE_MALLOC_FAILED_HOOK is set to 1 in

FreeRTOSConfig.h. When it is set, an application must provide hook function with the following

prototype:

void vApplicationMallocFailedHook(void)

http://www.freertos.org/a00111.html

Malloc Failed Hook

• This callback is called if the memory allocation process fails (pvPortMalloc() returns NULL)

• Helps to react on malloc problems, when function return is not handled

• It is necessary to enable it within Config parameters (part of FreeRTOSConfig.h configuration file)

configUSE_MALLOC_FAILED_HOOK

Malloc Failed Hook
• Malloc Failed hook callback skeleton is present in freertos.c created by STM32CubeMX

• Do not use blocking functions (osDelay() , …) in this function or while(1)

/* Hook prototypes */
void vApplicationMallocFailedHook(void);

/* USER CODE BEGIN 5 */
__weak void vApplicationMallocFailedHook(void)
{

/* vApplicationMallocFailedHook() will only be called if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
function that will get called if a call to pvPortMalloc() fails.
pvPortMalloc() is called internally by the kernel whenever a task, queue,
timer or semaphore is created. It is also called by various parts of the
demo application. If heap_1.c or heap_2.c are used, then the size of the
heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in
FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used
to query the size of free heap space that remains (although it does not
provide information on how the remaining heap might be fragmented). */

}
/* USER CODE END 5 */

configUSE_MALLOC_FAILED_HOOK

Malloc Failed Hook
• Let’s try to implement and test Malloc Failed hook mechanism

• Simple example of Malloc Failed hook (main.c):

• Do impossible memory allocation within one of our tasks

/* USER CODE BEGIN 5 */
void vApplicationMallocFailedHook(void)
{

printf("malloc fails\n");
}
/* USER CODE END 5 */

void StartTask1(void const * argument)
{

/* USER CODE BEGIN 5 */
osPoolDef(Memory,0x10000000,uint8_t);
/* Infinite loop */
for(;;)
{

PoolHandle = osPoolCreate(osPool(Memory));
osDelay(5000);

}
/* USER CODE END 5 */

}

/* Private variables -------------*/
osThreadId Task1Handle;
osPoolId PoolHandle;

Impossible memory allocation

configUSE_MALLOC_FAILED_HOOK

Stack overflow protection
check of stack ‘high watermark

• During task creation, its stack memory space is filled with 0xA5 data

• During run time we can check how much stack is used by task – stack ‘high water mark’

• To turn on this mechanism, some additional configuration of FreeRTOS is required (FreeRTOSConfig.h file or

STM32CubeMX FreeRTOS configuration window):

• configUSE_TRACE_FACILITY should be defined to 1

• INCLUDE_uxTaskGetStackHighWaterMark should be defined to 1

• There is a dedicated function to perform this operation:

uxTaskGetStackHighWaterMark(xTaskHandle xTask);

• After call it with task handle as an argument returns the minimum amount of remaining stack for xTask is

presented (NULL means task which is currently in RUN mode).

• Additional configuration within FreeRTOSConfig.h is required

Stack Overflow Detection - Option 1
• Stack can reach its deepest value after the RTOS kernel has swapped the task out of the Running state because this is

when the stack will contain the task context. At this point RTOS kernel can check whether processor stack pointer remains

within valid stack space. Stack overflow hook function is called, if the stack pointer contains value outside of the valid stack

range.

• This method is quick but it can’t guarantee catching all stack overflows.

To use this option only set configCHECK_FOR_STACK_OVERFLOW to 1.

Stack Overflow Detection - Option 2
• When task is first created, its stack is filled with a known value. When swapping task out of the Running state, RTOS kernel

can check last 16 bytes within valid stack range to ensure that these known values have not been overwritten by the task or

interrupt activity. Stack overflow hook function is called should any of these 16 bytes not remain at their initial value.

• This method is less efficient than method one, but still fast. It is very likely to catch stack overflows but is still not guaranteed

to catch all overflows.

• To use this method in combination with option 1 set configCHECK_FOR_STACK_OVERFLOW to 2 (this is not possible to

use only this option).

Stack overflow protection
runtime stack check mechanism

Stack overflow protection
runtime stack check mechanism in STM32CubeMX

• FreeRTOS is able to check stack against overflow

• Two options are available (to be configured within Config parameters (FreeRTOSConfig.h file):

• Option 1

• Option 2

Stack overflow protection
stack overflow hook implementation

• Stack overflow hook function is a function called by the kernel at detected stack overflow

• It should be implemented by the user. Its declaration should look like:

• vApplicationStackOverflowHook(xTaskHandle *pxTask, signed char *pcName);

• Its skeleton is generated by STM32CubeMX in freertos.c file

• Do not use blocking functions (osDelay() , …) or while(1) in this function

/* Hook prototypes */
void vApplicationStackOverflowHook(xTaskHandle xTask, signed char *pcTaskName);

/* USER CODE BEGIN 4 */
__weak void vApplicationStackOverflowHook(xTaskHandle xTask, signed char *pcTaskName)
{

/* Run time stack overflow checking is performed if
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook function is
called if a stack overflow is detected. */

}
/* USER CODE END 4 */

Statistics
• To collect runtime statistics of OS components, there is dedicated function:

osThreadList()

• This function is calling vTaskList()within FreeRTOS API and is collecting information about all

tasks and put them to the table

• Function triggering and data formatting should be implemented by the user

• To run this function you need to set two definitions (define its values to 1):

• configUSE_TRACE_FACILITY

• configUSE_STATS_FORMATTING_FUNCTIONS it should be added manually to FreeRTOSConfig.h or within

STM32CubeMX configuration window for FreeRTOS

FreeRTOS – debug support
TrueStudio

FreeRTOS debug support
STLink and JLink

• True Studio provides a FreeRTOS plugin that can be used to display a snapshot of tasks, queues, semaphores

and timers each time the debugger is paused or single stepped.

• It can be enabled within debug session.

View ->FreeRTOS

• After selection of i.e. FreeRTOS Task List there will be an additional window present, then after run and pause of

the code, the list of task till be displayed

FreeRTOS

low power modes

FreeRTOS and low power modes
Tickless idle mode operation

• Kernel can stop tick interrupt and place MCU in low power mode, on exit from this mode tick counter

is updated

• Enabled when setting configUSE_TICKLESS_IDLE as 1

• The kernel will call a macro (tasks.c) portSUPPRESS_TICKS_AND_SLEEP() when the Idle task is

the only task able to run (and no other task is scheduled to exit from blocked state after n* ticks)

• FreeRTOS implementation of portSUPRESS_TICKS_AND_SLEEP for cortexM3/M4 enters MCU in

sleep low power mode

• Wakeup from sleep mode can be from a system interrupt/event

• User implementation can be done by setting configUSE_TICKLESS_IDLE above 1 (to avoid usage

of kernel macros)

• Lowest power consumption can be achieved by replacing default SysTick by LowPower timers

(LPTIM or RTC) as tick timer

*) n value is defined in FreeRTOS.h file

Idle task code

• Idle task code is generated automatically when the scheduler is started

• It is portTASK_FUNCTION() function within task.c file

• It is performing the following operations (in endless loop):

• Check for deleted tasks to clean the memory

• taskYIELD() if we are not using preemption (configUSE_PREEMPTION=0)

• Get yield if there is another task waiting and we set configIDLE_SHOULD_YIELD=1

• Executes vApplicationIdleHook() if configUSE_IDLE_HOOK=1

• Perform low power entrance if configUSE_TICKLESS_IDLE!=0) -> let’s look closer on this

Perform low power entrance
idle task code

• Check expected idle time and if it is bigger than configEXPECTED_IDLE_TIME_BEFORE_SLEEP

(set to 2 in FreeRTOS.h) then continue

• Suspend all tasks (stop scheduler)

• Check again expected idle time by prvGetExpectedIdleTime()

• execute configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING with expected idle time and if

is bigger than configEXPECTED_IDLE_TIME_BEFORE_SLEEP (set to 2 in FreeRTOS.h) then

continue

• Execute portSUPPRESS_TICKS_AND_SLEEP() with expected idle time and enter into low power

mode

• Wakeup from low power mode and resume all tasks (start scheduler)

Low power mode

Perform low power entrance
configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING

• It is an empty macro defined in FreeRTOS.h file, needs to be defined by the user

• We should define this macro to set xExpectedIdleTime to 0 if the application does

not want portSUPRESS_TICKS_AND_SLEEP() to be called

Perform low power entrance
portSUPPRESS_TICKS_AND_SLEEP

• It is an empty macro defined in FreeRTOS.h file, needs to be defined by the user

• It is usually done in port functions (i.e. portmacro.h for gcc)

• There is an assignment to function i.e. vPortSuppressTicksAndSleep() which is

defined as “weak” within port.c

• This function is called with the scheduler suspended

FreeRTOS

footprint

RTOS’es ported to STM32 - comparison

Features

RTOS

Multitasking Round-robin

scheduling

priority Number of tasks Compiler

supported

Footprint

(kernel size in

kB)

CMX-RTX Preemptive

or

cooperative

Yes 255 255 IAR/Keil ROM: 3.904

RAM: 0.748

FreeRTOS Preemptive

or

cooperative

Yes unlimited unlimited IAR/Keil

/gcc

ROM: 2.7-3.6

RAM: 0.19

µC/OSII Preemptive Yes 256 255 IAR/Keil ROM: 2

RAM: 0.2

Keil-RTX Preemptive Yes 256 Unlimited (tasks

defined)

256 (tasks active)

ARM/Keil ROM:1.5-3

RAM < 0.5

embOS Preemptive Yes 256 unlimited IAR ROM:1.7

RAM :0.06

Thank you

